

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Using Recurrent Neural Networks for Particle Tracking at
the CERN Large Hadron Collider“

verfasst von / submitted by

Claus Hofmann, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2020 / Vienna 2020

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 921

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

 Masterstudium Informatik UG2002

Betreut von / Supervisor: Univ.-Prof. Dipl.-Inform.Univ. Dr. Claudia Plant

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 The Task of Particle Tracking . 2

1.3 Detector Structure . 3

1.4 Challenges in the Context of Machine Learning Research 4

1.5 Notation . 5

2 Related Work 7

2.1 Tracking Multiple Objects . 7

2.1.1 Other Applications . 9

2.2 The Kalman Filter as an Existing Approach to Particle Tracking . . . 9

2.2.1 The Combinatorial Kalman Filter 11

2.3 Recurrent Neural Networks . 11

2.3.1 Long Short-Term Memory . 12

2.4 Tracking Approaches using Neural Networks 12

2.4.1 Tracking-by-Detection with End-To-End Learning 12

2.4.2 An Approach from Biomedicine 17

2.4.3 The HEP. TrkX Project . 17

2.4.4 Deep Learning-Based Appearance Model 18

3 Tracker Design 19

3.1 Selection of Tracking Approach to be Adapted for Particle Tracking . 19

3.1.1 Adaptability . 19

iii

3.1.2 Tracking Performance Outlook 20

3.1.3 Run Time Performance Outlook 21

3.1.4 Decision . 22

3.2 Tracker Adaptations . 23

3.2.1 Tracked Features . 23

3.2.2 Association Model . 25

3.2.3 Loss . 28

3.2.4 Motion Model . 29

3.2.5 Tracking Particles throughout Different Volumes 31

3.3 Scaling Ideas . 32

3.3.1 θ Buckets . 33

3.3.2 Approximate-Nearest-Neighbour Buckets 33

3.3.3 θ/φ Buckets . 33

3.3.4 Comparison . 34

4 Tracker Implementation 39

4.1 The TrackML Dataset . 39

4.2 Model Implementation . 40

4.3 Data Pre-Processing Pipeline . 41

4.4 Model Management and Persistence 42

4.5 Model Training . 43

5 Evaluation & Discussion 45

5.1 Tracking Particle Samples . 45

5.1.1 Sample of 20 Particles . 46

5.1.2 Sample of 200 Particles . 47

5.2 Tracking Full Events of About 10,000 Particles 48

5.3 Accuracy Considerations . 48

5.3.1 Performance on the Full Data Set 48

5.3.2 Recognizing New Tracks . 50

5.4 Discussion . 51

iv

6 Conclusion and Future Work 53

6.1 Conclusion . 53

6.2 Future Work . 54

Appendices 62

A Abstract 63

A.1 Deutsch . 63

A.2 English . 64

B Notation and Symbols 65

C List of Abbreviations 67

v

vi

List of Figures

1-1 2D projection of the innermost detector with hits from particles travers-

ing it . 3

1-2 (r,z) - Projection of detector structure with central barrel volumes and

EC-rings on both sides. Adapted from [32] 4

2-1 Comparison: Simple RNN versus feed-forward NN; Adapted from [2] 12

2-2 Architecture proposed by [27]. Figure adapted from paper 13

2-3 LSTM architecture for association model proposed by [27] 15

3-1 Variability of features for individual particles in one event 24

3-2 Association model using feedforward neural networks 25

3-3 Accuracy and loss of three NN architectures for data association com-

pared with a simple approach just assigning each row to the column

with the lowest cost . 27

3-4 Run time comparison of architectures for data association. Both in-

ference and training times are depicted. Average run times over 10

instances . 35

3-5 Motion model of particle tracker. Model and graphic adapted from [27] 36

3-6 The transition layer manages a particle’s transition between two vol-

umes. Here, the pixel barrel volume and the short strip barrel volume

are shown as an example . 36

3-7 Graph depicting how the volumes are transitioned to for tracking the

full detector space . 37

vii

3-8 Distribution of track length per particle per bucket with different buck-

eting strategies . 38

5-1 Visualization of prediction quality. Predictions are marked as crosses,

hits as circles . 48

5-2 Minimum distances vs. particle distances for three event sizes (log scale) 49

5-3 Tracking score only considering tracks starting from specific areas of

the detector (sample of 20 particles) 50

viii

List of Tables

3.1 Comparison summary of proposed trackers according to estimated out-

looks on adaptability, tracking and run time 22

5.1 Tracking scores of different model combinations for samples of 20 particles 47

ix

x

Chapter 1

Introduction

1.1 Motivation

The CERN Large Hadron Collider (LHC) is the biggest of eight particle accelera-

tors operated by the European Organization for Nuclear Research (CERN). In the

Large Hadron Collider, quantum particles are accelerated and subsequently brought

to collision. When these particles collide, many new particles are created, which then

spread out through space. Around the point where the particles collide, the engineers

of CERN have constructed the ATLAS particle detector that records some of the par-

ticles’ positions along their trajectory. The measurements from the detectors are then

used to reconstruct the particles’ trajectories through space. This data can then help

physicists to uncover previously unknown phenomena of our universe or to confirm

theories in particle physics like it has been done with the Higgs-Boson. [10, 32]

The LHC is regularly upgraded. For example, CERN is currently working on

the High-Luminosity LHC [9], which is scheduled to be operational by the end of

2027 and which should increase the luminosity (the number of particle collisions

per second) of the LHC, making tracking the particles’ trajectories more challenging.

Therefore, the CERN team is currently also working on further improving the software

used for particle tracking. Furthermore, they also want to leverage machine learning

experts and enthusiasts from outside CERN to develop ideas on how one could deal

with the tracking problem. One part of this effort was that CERN was hosting the

1

TrackML Kaggle competition [8] that challenged the Kaggle community with the

particle tracking problem.

This thesis aims to contribute to this effort by developing a tracker entirely based

on machine learning using deep neural networks. More specifically, I will investigate

existing approaches to the tracking problem in other areas of research that use neural

networks and then adapt one approach to the particle tracking problem.

Neural networks have previously been successfully applied to a wide variety of

tasks, including face recognition [37], stock price prediction [33], and have even been

trained to learn how to play video games [28]. What should be shown with this thesis

is that deep neural networks are also capable of learning how to track particles. I

do not aim to develop a tracker that can outperform state-of-the-art trackers using

physical models, like the one used at CERN [12]. Rather, I would like to show that

neural networks can capture physical phenomena.

1.2 The Task of Particle Tracking

When the accelerated matter particles collide, new particles are created. These are

then scattered through space, and along their trajectories, they intercept multiple

detector layers. Each of the layers records the intercepting particles’ position. This

means that for each particle, multiple positions that lie on its trajectory (with some

inaccuracies because of the measurement process) are measured at certain, predefined

locations. The places where the detector records the particles are called hits.

Broadly speaking, there are two types of detector layers: 1) The so-called barrel

detector layers, cylinder-shaped detector layers that concentrically wrap around the

center, and 2) the negative and positive EC-Rings, which can be described as disks

located on both sides of the central barrel detector layers. [32]

The particle tracking task now involves connecting all the hits that originate from

the same particle traversing the detector and thereby reconstructing the particles’

trajectory through the detector. This is a challenging task because it is not sufficient

for a tracker to estimate each particle’s trajectory. The tracker also has to distinguish

2

(a) Without particle assignments (b) With particle assignments

Figure 1-1: 2D projection of the innermost detector with hits from particles traversing
it

hits that might originate from different particles on similar trajectories and assign

them to the correct track.

Figure 1-1 gives an illustration of the challenges of the particle tracking task. You

are probably able to see tracks from some particles by looking at the left figure, but

with bare eyes, it is very hard to group all hits that were created by each individual

of the 15 particles, especially in places where many hits lie very close to each other.

Furthermore, actually, the detector is traversed by approximately 10,000 particles

instead of the 15 shown in the figure.

An existing approach that is used to deal with the particle tracking problem will

be discussed in section 2.2.

1.3 Detector Structure

The ATLAS detector is constructed around the point in the LHC accelerator, where

the particles collide. The detector’s structure is described in [32]: It is composed of

three sub-detectors: The pixel detector, the short strip detector, and the long strip

detector. Each of the sub-detectors consists of three volumes: The barrel volumes,

whose layers wrap around the area of impact in a cylindrical fashion, and the negative

3

Figure 1-2: (r,z) - Projection of detector structure with central barrel volumes and
EC-rings on both sides. Adapted from [32]

and positive end-cap (EC) discs, which are rings located at both ends of the barrel

volume cylinders. Note that Figure 1-1 only shows a two-dimensional projection of

the barrel volumes; the hits from the end-cap discs are not displayed in this figure.

Figure 1-2 shows another projection of the particle detector, here with the radius

(r) and the spatial dimension z as coordinates. This projection displays the cylindrical

barrel volumes in the center as horizontal lines and the end-cap discs as vertical lines

on both sides.

1.4 Challenges in the Context of Machine Learn-

ing Research

The main challenge posed by the TrackML data set to machine learning research

is that the particle tracking task cannot easily be posed as a common supervised

classification problem because the labels assigned to particles are interchangeable.

To illustrate this, let me give an example: Two algorithms, A and B, should track an

4

event containing two particles. Algorithm A assigns the label X to all hits of particle 1

and the label Y to all hits of particle 2. Algorithm B, however, gives all hits of particle

1 the label Y and the hits of particle 2 the label X. In this example, both algorithms

would achieve perfect accuracy, as both of them have grouped the hits correctly.

This stands in stark contrast to common classification problems, like distinguishing

between images of cats and dogs. An algorithm that classifies cats’ images as dogs

and dogs’ images as cats would score an accuracy of 0, as every image in this example

had been misclassified. Furthermore, unlike supervised classification problems, which

commonly have a fixed, predetermined number of classes, the number of particles in

one event can vary: In the case of the TrackML data set, it can range from 7,000

to 12,000 particles in one event. These two properties of the particle tracking task,

namely the interchangeability of labels and the variability in the number of particles,

can also be found in unsupervised clustering approaches. Labels assigned to clusters

generated by these unsupervised methods can also be interchanged, as for clustering,

it is only relevant how the data points are grouped and not how the individual clusters

are called. Furthermore, there are clustering algorithms like DBSCAN [13], which do

not require to specify the number of clusters beforehand and, therefore, can group the

data into a variable number of clusters. While having these two properties in common

with unsupervised learning algorithms, the particle tracking task is still a supervised

learning problem, as the ground truth is provided in the TrackML data set. However,

as already mentioned, the particle tracking task cannot be easily modeled using a

common supervised learning-based classifier.

1.5 Notation

In this thesis, care has been taken to use a common notation convention in all parts.

Vectors of values are denoted as lower case bold symbols, e.g., v. To reference the

entry at position i in v, the notation v[i] is used. If v is a data vector, i.e., v

contains random samples from a probability distribution, a single value in v can also

be referenced as the non-bold v, if the specific index of this value is not important in

5

the current context. Analogous, bold upper case symbols denote matrices, e.g., M .

A specific entry at row i and column j in the matrix is denoted by M [i, j]. If M

is a data matrix (i.e., rows represent samples and columns features), the vector m

denotes a single sample from this matrix (a single row). To specifically refer to the

sample in row i of the matrix, the expression M [i] is used.

6

Chapter 2

Related Work

2.1 Tracking Multiple Objects

The task of particle tracking is closely related to problems that arise in other areas

of research in terms of how the problem is posed and how it can be solved. An

example that aims to solve a similar problem as particle tracking is the research area

of multiple object tracking (MOT) in computer vision. MOT tackles the problem

of how to track multiple objects (for example, persons) in a video sequence. More

specifically, MOT aims to identify certain objects in a video, maintain their identities

in a frame-by-frame manner, and yield their trajectories. In contrast to single object

tracking (SOT), MOT aims at handling video sequences with a large number of

objects. This includes the task of modeling the objects’ motion and distinguishing

different objects in the video. [24]

In MOT, one can divide the way how the objects are tracked in two groups:

• The first group, tracking-by-detection, as discussed in [7, 22, 27, 36] divides the

process of tracking multiple objects into two distinct steps: The first step detects

all objects that have to be tracked in each frame of the video sequence. It does

not connect the detections of the individual frames or recreate trajectories.

Rather, it uses a detection model to find all instances of the object in each

frame. To give an example, when tracking multiple persons in a video sequence,

7

the first step should identify those parts of each frame that look like a person.

The second step, often referred to as data association, involves tracking the

objects by finding all detections that correspond to a single object across the

frames. In the literature, this linking step can be done by either only using the

motion dynamics of the objects [27] or by also using the objects’ appearance as

an additional means of discrimination between objects [20]. The tracking-by-

detection approach has gained increasing popularity over the last years [22].

• The second group of tracking approaches, which in the literature is also referred

to as model-free tracking [42] or category-free tracking [24], rely on an initializa-

tion step, which has to be performed manually. Then, they track the manually

initialized objects in the video sequence. Examples of this group of approaches

include [5,30,42]. The advantage of these approaches over tracking-by-detection

is that model-free approaches can track objects with generic appearance, for

example, objects with little to no annotated examples available, which would

enable one to train a model for object detection. Furthermore, model-free ap-

proaches can track multiple different objects in a single video sequence (for

example, a person and an animal).

Arguably, the tracking-by-detection approach shares the most similarities with the

particle tracking problem. To be more specific, the second step, the data association

step, which connects the detections in the individual frames to form tracks, aims to

solve a problem that is very similar to the particle tracking problem, as they both

create tracks from individual detections. Moreover, the concept of a frame in a video

in MOT can be reinterpreted as a layer in a particle detector in particle tracking.

A major difference is that with particle tracking, one does, of course, not have

appearance information for the individual detections. Therefore, one has to rely

solely on the motion dynamics of the particles. Another challenge that makes particle

tracking harder is that there is commonly no strict succession of the detector layers

as we have it with the frames in a video sequence. For example, in the structure of

the LHC’s detector, depending on the particle’s trajectory, it can either only hit the

8

cylindrical barrel layers, but it can also first intercept the barrel layers and then the

EC disks.

2.1.1 Other Applications

It turns out that the problem of tracking multiple objects not only is dealt with in

computer vision (MOT) or particle physics (particle tracking) but can also be found

in biomedicine research [29, 40] and military applications, for example, for tracking

objects such as ballistic missiles, aircraft, and military ground vehicles [6, 31]

As a matter of fact, many approaches for solving the problem of tracking multiple

objects in these applications use similar algorithms, like the Kalman Filter [14,18,23,

31] and min-cost flow [29,41].

2.2 The Kalman Filter as an Existing Approach to

Particle Tracking

Most of the particle trackers used at the ATLAS detector [12] are based on the

Kalman Filter. The original version of the Kalman Filter [18] was intended to model

dynamic systems in the realm of (tele-)communication and was proposed for solving

problems such as the prediction of random signals and the separation of signals from

random noise. Subsequently, the Kalman Filter was adapted for solving the problem

of tracking multiple targets [31] and also more specifically to the task of particle

tracking [14]. In [14], the underlying mathematical model for particle tracking is

described as follows:

The state vector x̃ captures the true state of a particle (e.g., the position in space)

at each point of its trajectory. The state vector is defined as a function

x̃ = x̃(z)

. which describes the entire trajectory of a particle. As the particle intercepts the

detector only at certain, discrete locations, it is sufficient not to model the entire

9

trajectory but rather to only consider the state vector of each particle at these distinct

intersection points zk

x̃(zk) = x̃k = fk−1(x̃k−1) +wk−1

The function f describes the propagation of the particle from layer k − 1 to layer

k, and the random variable wk−1 accounts for a possible random disturbance of the

particle’s track. The states measured by the detector at layer k are described as

mk = g(x̃k) + εk

Note that the measurement at layer k,mk, is influenced by multiple random variables,

which in the model are assumed to be independent: The measurement noise εk, the

track disturbance wk−1, as well as all prior track disturbances.

Based on this model, the Kalman Filter is performed in three steps:

1. Filtering estimates the current state of a particle, based on the past measure-

ments

2. Prediction gives an estimate of the state vector in the future time steps

3. Smoothing corrects the state vectors in the past by accounting for all mea-

surements up until the current state

Going into detail on how exactly this estimation is performed mathematically would

go beyond the scope of this document, but the interested reader will find further

details on this topic in [14].

In the particle trackers used at CERN, the Kalman Filter is used in track fitting,

the process of estimating the curve describing the particle’s trajectory. A Kalman

Filter-like formalism is also used for estimating the particles’ states in the track

finding process, which is the process of finding all measurements originating from a

single particle. [12]

10

2.2.1 The Combinatorial Kalman Filter

For track finding, which is the process of finding all measurements originating from

a single particle, while possible, usage of the classical Kalman Filter is often not

sufficient, especially in scenarios with high fluctuation in the particle density, as it

is the case in the LHC. To mitigate this issue, [25] proposed a technique called the

Combinatorial Kalman Filter (CKF). In the classical approach, a track is formed by

applying the Kalman Filter to a seed (an initial guess of a track candidate), subse-

quently collecting the hits along its predicted path. In this case, a hit is assigned to

the closest track prediction. In contrast, the CKF branches a particle track for each

hit contained within a certain range ±δmaxu , giving birth to a new set of track candi-

dates. To limit the number of track candidates in the process, the algorithm discards

tracks where the most recently added hit exceeds a limit on this hits’ contribution

to the filtered track (δχ2
max

). Moreover, after each evolution step, a quality measure

is calculated for each track candidate, and candidates with insufficient quality are

discarded. The CKF has been implemented for track finding at the LHC [12].

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) have in the past been successfully applied to

learning problems dealing with time series [11, 27, 38]. In contrast to feed-forward

neural networks, recurrent neural networks contain cycles. More specifically, the

input to a recurrent neural network also contains outputs from a previous time step.

These inputs that result from a previous time step, which form the so-called hidden

state vector (h), could also be described as a means of memory that allows the RNN

to store and retrieve information from previous inputs. An example of a simple RNN

is a neural network with a feedback loop at each neuron (see Figure 2-1).

It seems natural that RNNs could also help with the particle tracking problem,

as a particle’s position from previous layers evidently heavily influences the particle’s

position at subsequent layers. The RNN’s state could, in this application, be used

as a means of transferring information about the particle’s movement on previous

11

(a) Recurrent neural network (b) Feed-forward neural network

Figure 2-1: Comparison: Simple RNN versus feed-forward NN; Adapted from [2]

detector layers to the particle state prediction for the next layer.

2.3.1 Long Short-Term Memory

A common problem with RNNs is that they tend to have a hard time recognizing

dependencies between inputs that lie many time steps apart. The reason for this is

that with a randomly initialized recurrent neural network, the input of a time step

long ago has very little influence on the current output of the RNN. If, however, in

reality, this input contains critical information for predicting the current output, the

RNN will hardly or only in a very long training process learn this dependency. [16]

To cope with this problem, [17] suggested a neural architecture called long short-

term memory (LSTM), which the author claims can bridge time intervals of over 1000

steps. This is done by enforcing constant error flow through each recurrent unit and

introducing gates that reduce conflicts in weight update signals. Furthermore, the

LSTM uses two state vectors: The hidden state (h) and the current state (c).

2.4 Tracking Approaches using Neural Networks

2.4.1 Tracking-by-Detection with End-To-End Learning

The authors of [27] propose a tracking-by-detection-based MOT approach that relies

entirely on recurrent neural networks. They demonstrate their algorithm on the

task of tracking persons in a video sequence. Their tracker can be subdivided into

12

511

TVIHMGXMSR

/670

/670

/670

/670

/670

511

YTHEXI�
FMVXL���HIEXL

511

TVIHMGXMSREWWSGMEXMSR

X�� X X��

Figure 2-2: Architecture proposed by [27]. Figure adapted from paper

two main parts: 1) A model for predicting the target motion and 2) a model for

associating the predicted target states to the respective detections. According to the

authors, the approach they propose is the first method for tracking objects that relies

on end-to-end learning, i.e., the entire task of tracking is learned entirely from data.

Figure 2-2 gives an overview of the architecture of the tracker. An object’s state

(i.e., the object’s position, not to be confused with the recurrent hidden state used

in RNNs) in the next frame is predicted using a custom RNN architecture. The

authors then use an LSTM to associate the predicted states to the actual detections

from the video sequence. This is done by exploiting the LSTM’s temporal step-by-

step functionality to predict the assignment for each target, one target at a time.

Finally, based on the association information obtained from the LSTM, the authors

use another RNN to update the target’s state in order to correct the predictions using

the detections from the frame.

Motion model

The model to predict and update the target’s state (subsequently referred to as the

motion model) is divided into three main components: The first component is the

13

prediction step, which deals with predicting the targets’ state in the current frame

based on the states from the last frames. The second component, the update step,

updates the targets’ state based on the detections and their estimated association

scores to the predicted target states. Finally, the birth/death step accounts for objects

entering or disappearing from the scene by assigning an existence score for the current

frame to each of the tracked objects.

The prediction step predicts an object’s position x∗
t+1 solely based on the state

vector of the last frame xt and a recurrent hidden state ht, which is fed into the

network from the last time step. Thus, the predicted state x∗
t+1 can be described as

a function

x∗
t+1 = pred(xt,ht,Wp) (2.1)

where Wp represents trainable model parameters.

The update step’s inputs comprise of the predicted position x∗
t+1, the recurrent

hidden state from the prediction step ht+1 the probability of the object’s existence εt,

the detections Mt+1 found in frame t+ 1 and the prediction-to-detection association

probabilities At+1, latter of which are obtained from the association model. Using

these values, the update model estimates the object’s position xt+1

xt+1 = upd(x∗
t+1,ht+1, εt,Mt+1,At+1,Wu) (2.2)

Finally, the birth/death step in the model the authors proposed uses an intermedi-

ate result from the update step and outputs the estimated track existence probability

εt+1 (the probability of the given object existing in the frame at time t). It is im-

portant to note here that the authors propose to keep the number of tracked objects

static throughout the tracking process. I.e., the model in each frame predicts the

state of n objects, even though there may not be this many objects in the frame. The

existence probability should now give the information which of these n objects really

exist at the current time step.

14

� � � ��� � �
SUHGLFWLRQ

�� �� �� �� ��� ��
VRIWPD[

� � � � � ���
SUHGLFWLRQ

��� �� �� �� �� ��
VRIWPD[

��� � � ��� � �
SUHGLFWLRQ

��� ��� ��� �� �� ���
VRIWPD[

'HW��� 'HW������ 'HW��� ���

/670

K��F

/670

K��F

/670

'

SDULZLVH�GLVWDQFH

7DUJ���

'
7DUJ���

'
7DUJ���

Figure 2-3: LSTM architecture for association model proposed by [27]

Association model

The association model fulfills the task of assigning the individual objects’ predicted

states xt to the detections mt in each frame t. For this, the authors first compute the

pairwise distances Dt[i, j] between each object’s predicted position i and all detections

j. The resulting matrix Dt is of dimension n×m where n refers to the total number

of objects and m to the number of detections. Then, the authors use an LSTM to

predict association probabilities At[i, j] (At is also an n×m matrix) using the LSTM’s

time step mechanic to predict association scores for all the objects, one object at a

time. It is important to note here that the recurrent time step mechanic in the

association model serves a different purpose than in the motion model. While in

the motion model, each frame in the input video sequence represents a single time

step, in the association model, the time step mechanic is exploited to predict the

object’s assignments to the detections within a single frame. In other words, in the

motion model, a frame requires a single time step, while the association model has to

predict a full ”time” series for each frame. An overview of how the LSTM architecture

proposed by the authors works can be viewed in Figure 2-3. The visualization shows

15

the process of assigning three objects to six detections. Note that in each of the

association model’s internal time steps, the full pairwise distance matrix Dt is used.

Losses

The authors employ different losses for each of the two models. For the motion model,

the loss is computed as

L(x∗,x, ε, x̃, ε̃) = λ
1

n

∑
‖x∗ − x̃‖2 + κ

1

n

∑
‖x− x̃‖2 + νLε + ξε∗ (2.3)

This loss is a sum of in total four components which are weighted using the hyper

parameters λ, κ, ν and ξ. The first two components represent losses corresponding to

the predicted states x∗ and updated states x, respectively. More specifically, these

two components are calculated using the mean squared error (MSE) between the

estimated values and the true states x̃. The loss term Lε represents the binary cross

entropy loss between the estimated existence probabilities ε and the true existence

labels ε̃:

Lε = − 1

n

∑
ε̃ log (ε) + (1− ε̃) log (1− ε) (2.4)

The last term of the motion model’s loss (ε∗) is a regularization term which, according

to the authors, should minimize the difference between two consecutive values of εt

in order to force the model into making less hard decisions, for example in the case

where a detection is missing. ε∗t for an individual time step is computed as

ε∗t = |εt − εt−1| (2.5)

For the association model, the authors use the categorical cross entropy loss:

L(A, Ã) = −
n∑
i=1

m∑
j=1

Ã[i, j] log(A[i, j]) (2.6)

where A represents the matrix of predicted object-detection association probabilities

and Ã a binary matrix representing the true object-detection assignments.

16

Evaluation

The authors tested their approach on the MOTChallenge dataset. The approach the

authors propose does not quite reach the accuracy of other state-of-the-art trackers,

but unlike them, it does not use appearance information but only the geometric

locations of the objects. However, according to the authors, the proposed method

is two orders of magnitude faster than other state-of-the-art approaches for multiple

object tracking.

2.4.2 An Approach from Biomedicine

The authors of [40] propose a method for tracking intra-cellular particles (not to

be confused with the particles we want to track in a particle detector) in time-lapse

microscopy. To do this, they use a temporal sliding window for solving the association

problem from frame to frame. For each frame, first, they extract features from the

so far established tracks using an LSTM operating on the last S states of the track.

They select a number of possible detections by performing a range query on the

track’s last state. Finally, they use a feed-forward neural network with dropout to

1) associate the detection candidates to the tracklet by formulating the association

problem as a classification problem and 2) predict the tracklet’s state in the next

frame by formulating a regression problem.

The authors evaluated their approach by comparing its performance to 11 alter-

native data association methods used in the realm of tracking intra-cellular particles

and performed slightly worse than the best state-of-the-art methods.

2.4.3 The HEP. TrkX Project

This is the only scientific source I found that applies neural networks to the particle

tracking problem. The authors propose a method that uses LSTMs and convolutional

neural networks (CNNs) to find the track of a given particle within all particle tracks.

To achieve this goal, they use an image-like representation of the detector layers,

where a single pixel is activated when a particle hits the detector layer at the pixel’s

17

position. Then, based on a seed of a particle track (i.e., the particle’s hits from the

first 2-3 layers) and all ”images” of the other layers, CNNs or LSTMs predict the

pixels where this particle will hit the detector on the other layers.

According to what they have written in their work, the authors have only tried

their algorithm on toy data with a very limited amount of particles and without

considering the end-cap discs. [38]

2.4.4 Deep Learning-Based Appearance Model

The work by [39] presents an algorithm for tracking objects in a video sequence using

the widespread approach of state predictions using the Kalman Filter [18] and solving

the problem of which prediction corresponds to which detection using the Hungarian

algorithm [21]. The authors’ work mainly focuses on dealing with occlusions. These

occlusions occur in visual tracking when a tracked object is not visible in the video

sequence, for example, because the tracked object has moved behind another object.

Once the tracked object reappears in a video frame, the tracker should still correctly

associate the object. For this, the authors employ a convolutional neural network

(CNN) to compute an embedding using the objects’ appearance. Then, they perform

a nearest neighbor query on the embeddings to match the detection to the correct

tracked object.

18

Chapter 3

Tracker Design

3.1 Selection of Tracking Approach to be Adapted

for Particle Tracking

To select which of the approaches discussed in section 2.4 to adapt and implement

for the particle tracking problem, the proposed algorithms are compared according to

adaptability, tracking performance outlook, and run time performance outlook. Un-

fortunately, the approaches discussed use different evaluation data sets and metrics

(except for [27] and [39], which both use the MOTChallenge data set and similar met-

rics), which makes a comparison according to pure performance measures infeasible.

Thus, the comparison has to give an estimate on how the approaches may perform

when adapted the particle tracking task.

3.1.1 Adaptability

Milan et al.

The authors of [27] have stated in their publication that they have designed their

tracker to be easily adaptable to other applications by replacing the features of the

state vector with the features that are relevant to the specific application. A special

problem that will arise when adapting this approach to particle tracking is how to

19

track the particles throughout the different detector volumes, as in contrast to frames

in a video sequence, the layers in the detector cannot be ordered in strict succession,

as any given particle might or it might not hit a certain detector layer.

Yao et al.

In [40], it is not explicitly mentioned how one could adapt their approach from the

realm of molecular biology to other problems, but similarly to the last approach,

replacing the state vector features with relevant ones should work. Here also, one has

to deal with the problem of the different detector volumes.

HEP. TrkX Project

The approach described in [38] deals with particle tracking, but only on a toy data

set and without the problem of orthogonal detector volumes. Thus, some adaption

is likely needed, but it might be easier than the two approaches discussed before, as

the tracker has been designed specifically for particle tracking.

Wojke et al.

In [39], an approach for visual MOT is discussed, which applies neural networks for

appearance modeling. As there is no appearance for the individual objects in particle

tracking, this approach cannot be adapted. Thus, it will not be further discussed in

this comparison.

3.1.2 Tracking Performance Outlook

Milan et al.

While [27] does hardly reach the state-of-the-art in MOT trackers in terms of accu-

racy, one must also mention that most of the trackers the authors compared their

approach to not only use motion dynamics but additionally appearance information.

The authors’ work does not use appearance information. As appearance information

20

is also not available for the particle tracking problem, the outlook on this approach’s

performance can still be described as promising.

Yao et al.

The results from [40] are comparable to the state-of-the-art in the authors’ research

domain. As for their application, appearance features cannot be used, one could

argue that state-of-the-art trackers from this domain will likely perform worse than

the trackers from the research area of MOT because MOT has access to more features.

Therefore, one cannot really say if the tracking performance will be better or worse

than for the approach by Milan et al.

HEP. TrkX Project

The authors of [38] have tested their approach on a toy data set of up to 22 tracks.

The full data set contains around 10,000 tracks. While the median accuracy (the

fraction of hits assigned to the correct particle) up until 21 tracks is above 0.8, the

median accuracy dramatically drops to 0.5 at 22 tracks. Thus, it can be argued that

scaling this tracker to the full data set w.r.t. the accuracy will be quite hard. It could

be possible with additional adaptations, though.

3.1.3 Run Time Performance Outlook

Milan et al.

In [27], it is reported that their tracker performed at a frame rate of 165 frames

per second. In contrast, the best tracker the authors compared their approach to

achieved a frame rate of 32.6 frames per second. The other MOT approaches that

were compared were two orders of magnitude slower than the presented approach.

This gives a very promising outlook for this approach with respect to run time.

21

Paper Adaptability Tracking Run time

Milan et al. • • •
Yao et al. • • •

HEP. TrkX • • •
Wojke et al. •

• Very promising
• Promising
• Decent
• Not considerable

Table 3.1: Comparison summary of proposed trackers according to estimated outlooks
on adaptability, tracking and run time

Yao et al.

The authors of [40] unfortunately did not compare their approach to other trackers

from their research domain. Thus, the proposed algorithm has to be examined closer

to assess the run time performance outlook. While the deep learning model seems

quite promising in terms of run time, they use exact methods for solving the linear

assignment problem when assigning the predicted states to the detections. Using the

Hungarian algorithm [21] for solving this task takes O(n3), which could negatively

impact the total run time.

HEP. TrkX Project

There is no run time comparison provided in [38]. As already mentioned in section

3.1.2, the authors tested their approach on up to 22 tracks, with the full data set

containing 10,000 tracks. This might indicate that additional work has to be done to

scale this approach to the full data set.

3.1.4 Decision

Table 3.1 summarizes the findings from the sections 3.1.1 - 3.1.3. The algorithm

by Milan et al. [27] has the best outlook when it comes to run-time performance and is

also promising regarding adaptability and tracking performance. As run time might

be a very important criterion for scaling a tracker to the full data set of about 10,000

particles, the author of this thesis decided to adapt and implement this approach for

22

particle tracking. The outlook for Yao et al. [40] is promising concerning all criteria.

Thus it might also be interesting to adapt this approach for the LHC data set. As the

run time outlook seems slightly less promising than the one of Milan et al., Milan et

al. is selected over Yao et al. While the HEP. TrkX Project [38] is estimated to have

the best outlook with respect to adaptability, adapting this approach could require

additional research regarding scaling concerning tracking performance and run time.

Finally, the approach by Wojke et al. cannot be considered for adaption, as the

approach is focused on appearance modeling.

3.2 Tracker Adaptations

3.2.1 Tracked Features

The tracking approach by Milan et al. [27] uses a state vector with four components:

The object’s position in the frame (x and y) and the size of the bounding box around

the object (w and h). This vector is a dynamic representation of the objects’ states

within the different frames. The state vector’s components have to be adapted for

particle tracking, as evidently there is no such thing as a bounding box in this ap-

plication. The main components used in this thesis are the particle’s three spatial

coordinates x, y, and z. Furthermore, pre-computed non-linear projections of these

components are added to the state vector, specifically the azimuthal angle φ and the

polar angle θ. These were added because unlike the spacial components x, y, and

z, which increase in absolute magnitude with increasing detector layer count, the

angles φ and θ of a given particle can be expected to change to a far lower extent

with increasing layer count and are therefore arguably better suited as proxies for the

positions in a video frame. The azimuthal angle φ is computed as

φ = atan2(y, x)

23

Figure 3-1: Variability of features for individual particles in one event

and the polar angle θ is given by

θ = atan2(
√
x2 + y2, z)

Figure 3-1 displays a box plot of how the state vector’s features for individual

particles vary across different detector layers. For this, the event data was standard-

ized using the z-transformation, and then for each particle individually, the standard

deviations of the features were computed. Thus, the unit of the vertical axis is σ,

the standard deviation of the entire data set. As one can see, the variabilities of

the angles φ and θ are far smaller than the ones of the spatial dimensions, although

there are some outliers. For the angle φ, these outliers could be explained by some

particles’ tracks wrapping around from 2π to 0 (or vice versa).

For tracking, all state vector components are scaled to be in the range [-0.5, 0.5].

For further information on the scaling of the three spacial components x, y, and

z when tracking particles throughout multiple detector volumes, please see section

3.2.5.

24

11�
�URZ�ZLVH�

4EMV[MWI�HMWXERGI�QEXVM\

11�
�FROXPQ�
ZLVH�

XVERWTSWI

2�0E]IVW

%WWSGMEXMSR�WGSVIW

Figure 3-2: Association model using feedforward neural networks

3.2.2 Association Model

Architecture

The model proposed by [27] for assigning the predictions from the motion model to

the detections uses an LSTM, which exploits the LSTM’s temporal steps to predict

association scores of each particle, one particle at a time. For this, the authors state

they use the full pairwise distance matrix Dt between predictions and detections as

input for each time step. I could not reproduce the author’s results with this architec-

ture when using the full pairwise distance matrix, but I achieved good results when

I only fed the row Dt[i] instead of the entire matrix to the LSTM when predicting

the association scores for particle i.

Furthermore, a novel neural network architecture for the association task has been

developed for this thesis, which only uses common feedforward NNs to solve the task.

Figure 3-2 illustrates the architecture. The pairwise distance matrix is fed into a

dense layer with m units where m refers to the number of measurements. In this

step, the dimension of the particles is used as a batch dimension. The matrix is

25

then transposed and fed into another dense layer with n (the number of particles)

units. This process can subsequently be repeated on multiple layers, but experiments

showed that a single layer is sufficient.

Evaluation

To compare the performance of the individual architectures for data association,

similarly to [27], they have been tested on the problem of solving the linear assignment

problem:

arg min
W

∑
i

∑
j

W [i, j] · C[i, j] (3.1)

such that ∑
j

W [i, j] = 1 for all i (3.2)

∑
i

W [i, j] = 1 for all j (3.3)

W ∈ {0, 1}N×M (3.4)

Given a cost matrix C the task is to find an assignment W which minimizes the total

cost and which ensures that each row and each column is assigned once and only once.

Note that none of the architectures discussed earlier can by design guarantee that both

requirements (3.2) and (3.3) are fulfilled simultaneously. The idea is rather to give

an approximation to the correct solution. To compare the approaches, cost matrices

Ci have been randomly generated and the respective linear assignment problems

have been solved to optimality using the scipy package. Then, the models have

been trained on the optimal solutions. Each model was trained on 800,000 random

problem instances. Finally, the models are evaluated according to their accuracy (the

number of correct assignments) and the cross entropy loss. Furthermore, the run

time of the individual model architectures was measured on an Intel Core i5-7267U

dual-core processor with 3.1GHz. As depicted in figure 3-3, the row-wise LSTM model

performs best with respect to accuracy. The dense model gives slightly worse but still

26

Figure 3-3: Accuracy and loss of three NN architectures for data association compared
with a simple approach just assigning each row to the column with the lowest cost

competitive results. The LSTM model using the full pairwise distance matrix at each

time step in my experiments gives hardly a better result than random assignment.

As a reference, the architectures are compared to a very simple approach where only

the softmax function is applied to the entries in the cost matrix C, resulting in each

row being assigned to the column with the lowest cost. The accuracy of this simple

approach is comparable to the one of the row-wise LSTM and the dense architecture,

which indicates that when just considering hard assignments, the NNs are hardly

better than the naive approach. However, when considering the loss, and therefore

soft assignments, it turns out that the two NNs in fact perform better than just

applying the softmax function to the cost matrix.

The graphs depicted in Figure 3-4 show that both LSTM architectures perform

significantly worse than the dense model with respect to run time. The former show

a very large increase in run time with increasing problem size - average training time

taking about 6-8 seconds for a 50 × 50 cost matrix - while the latter does not show

an increase in run time for the problem sizes tested, which could be caused by the

overhead of the deep learning framework used for implementing the models being

larger than the actual run time of the model. Data association on the dense model

for a 50 × 50 matrix takes on average only about 0.07 seconds - a speedup of 85

27

compared to the LSTM-based architectures.

One-to-many assignment

Unlike the task of tracking objects in a video, where each object in each frame is

assigned to at most one detection, a single particle can produce multiple hits on a

single detector layer. This is caused by the structure of the particle detector: The

smallest units of detection, the so-called modules, overlap in certain regions, which

can cause a particle to intercept two or more modules on a single layer. As a result of

this, the detector records multiple hits for the particle on this layer. [32] The model

proposed by [27] enforces that one object can be assigned to only one detection by

applying the softmax function on the axis of the objects (particles in the case of

particle tracking). To make the fact that one particle can result in multiple hits

reflected in the model for particle tracking, the softmax function is instead applied on

the axis of measurements (detections in the case of MOT). This ensures the possibility

of a single particle being assigned to multiple measurements and enforces that each

measurement can be assigned to one particle and one particle only.

3.2.3 Loss

While [27] state they used separate losses for training the association model and the

motion model and at first trained both models independently, it is not quite clear from

their paper which loss they used when training the models together, but presumably

they also used the motion model loss

L(x∗,x, ε, x̃, ε̃) = λ
1

n

∑
‖x∗ − x̃‖2 + κ

1

n

∑
‖x− x̃‖2 + νLε + ξε∗ (3.5)

for training the combined model, because the MOTChallenge [26] they used for evalu-

ating their results only relies on the position and size of the bounding boxes as input.

The bounding boxes can be optimized using only the loss formulation (3.5), because

using this loss minimizes the errors of the state vector estimators x and x∗, which

contain the bounding box information.

28

However, for the particle tracking challenge on Kaggle [8] the benchmark that is

used for evaluation is purely based on the particle-to-measurement assignments. The

particle’s estimated positions are not evaluated. Thus, arguably the loss (3.5) is not

sufficient, as it does not contain the matrix of assignmentsA. Therefore, the following

loss is used, which combines the loss from the motion and association models:

L(x∗,x, ε,A, x̃, Ã, ε̃) =λ
1

n

∑
‖x∗ − x̃‖2 + κ

1

n

∑
‖x− x̃‖2+

νLε + ξε∗ − ψ
n∑
i=1

m∑
j=1

Ã[i, j] log(A[i, j])
(3.6)

3.2.4 Motion Model

While the original tracker from [27] uses a regular RNN architecture for modeling

target motion, the particle tracker presented in this thesis uses an LSTM, as LSTM

is known to perform better at learning long-term relationships between time steps

and does not suffer from the problem of vanishing gradient to the same extent as

regular RNNs do [17].

Figure 3-5 shows a detailed graph of the architecture of the motion model used

by the particle tracker. There are two LSTM cells with a distinct set of trainable

weights: The cell in the prediction step deals with predicting particles’ positions at

detector layer t + 1 based on the particle state vector and the recurrent hidden and

current states from detector layer t. In the update step, another LSTM cell uses

the hidden and current states from the prediction step at detector layer t + 1 and a

weighted mean of the state vector prediction and the measurements at detector layer

t+ 1.

This weighted mean expression requires some additional explanation. A similar

process is used in the model from [27], though it is unfortunately not discussed in

the respective paper. However, the author explained it in a post on their code repos-

itory [4]. The formulation there relies on a one-to-one assignment between objects

and detections for each frame. Because in the particle tracking case, a particle can

trigger multiple measurements on a single detector layer, the weighted mean for par-

29

ticle tracking has to be adapted: Namely, as a first step, the assignment scores are

standardized such that the scores for each particle sum up to 1:

A
(R)
t+1[i, j] =

At+1[i, j]∑m
k=1At+1[i, k]

(3.7)

As a next step, the individual measurements are weighted with their assignment score

according to A
(R)
t

X
(W)
t+1 [i] =

m∑
j=1

A
(R)
t+1[i, j] ·Zt+1[j] (3.8)

note that X
(W)
t+1 [i] is a weighted mean of the measurements using the association

scores from particle i, X
(W)
t+1 [i] can thus be interpreted as a (likely biased) estimator

of X̃t+1[i]. The re-weighting step denoted in (3.7) is necessary as in the data set,

multiple measurements can be assigned to a single particle. Weighting the measure-

ments according to At+1, would introduce an additional bias to X
(W)
t+1 where the

entries of X
(W)
t+1 [i] would roughly be proportional to the number of measurements

assigned to particle i. This is mitigated by the standardization in (3.7), as X
(W)
t+1

should not be influenced by the number of measurements assigned to the individual

particles.

As a next step, X
(W)
t+1 is weighted by the existence scores εt+1. To explain the

reasoning behind this, remember that in the model, throughout the entire time series

process, the states for n particles are predicted, even if a lower number of particles

actually intercept the current detector layer. As the association scores in A
(R)
t+1 only

really contain sensible information if the associated particles actually exist, it could

make sense to weigh X
(W)
t+1 according to the existence probability.

X
(ε)
t+1[i] = εt[i] ·X(W)

t+1 [i] + (1− εt[i]) ·Xt+1[i] (3.9)

As the existence probabilities εt+1 of the detector layer t + 1 are at this moment

not yet available, the weighting has to be done using εt, the existence scores from

detector layer t.

30

3.2.5 Tracking Particles throughout Different Volumes

An additional requirement that sets a particle tracker apart from an MOT-based

tracker is the ability to track particles throughout different volumes. To explain why

this is a problem, let’s reexamine the detector structure (see also section 1.3. for

more information). The barrel volumes in the center are oriented orthogonally to the

EC discs on both sides. When not considering the EC discs, the barrel layers form a

sequence where one layer is followed by exactly one other layer, much like the frames

in a video. However, when adding the EC discs, it is impossible to build such a

frame-like succession while also maintaining the particles’ natural order intercepting

the individual layers.

To solve this problem, each volume uses a separate set of both motion and associ-

ation model, with an additional recurrent neural network (in the following called the

transition layer) managing the transition between the individual volumes. Figure

3-6 displays the architecture of the transition layer at the example of transitioning

from the pixel barrel volume to the short strip barrel volume. It uses the current and

hidden states and the updated states and the existence scores from the last layer t

of the pixel barrel volume to estimate the predicted state and the existence score on

the first layer 0 of the short strip barrel volume.

Figure 3-7 depicts how the individual volumes have been connected using the

transition layer. From each of the three barrel volumes, the particles are transitioned

to the respective positive and negative EC volumes and to the succeeding barrel

volume. For each of the volumes, states for the full set of n particles are computed.

The fact that certain particles never intercept some detector volumes is accounted

for by the existence scores ε. This is why the transition layer estimates not only the

state prediction for the first layer of the volume transitioned to but also an initial

existence score.

When tracking particles on multiple volumes, the spatial coordinates x, y, and z

are normalized to be in the range [-0.5, 0.5] for each volume individually. In other

words, if a hit’s normalized x coordinate in a volume is 0.5, this means that this hit

31

is at the highest possible x coordinate of this volume, not of the entire detector.

3.3 Scaling Ideas

The data set from the TrackML Kaggle competition [8] contains about 7,000 - 12,000

particles per event, with a maximum of 5,000 - 7,000 particles present on a single

layer. Scaling to such a large number of objects to track simultaneously poses a spe-

cial challenge to the tracker, as for each layer, the tracker has to compute the full

pairwise distance matrix between the predicted particle positions and the measure-

ments on this layer. Because the expected number of hits per particle is constant, this

operation scales quadratically with the number of particles. Thus, the tracker’s run

time is bounded from below by Ω(p2 · l) where p is the number of particles to track

simultaneously and l the total number of layers in the detector. Furthermore, the

memory requirements to store the full pairwise distance matrix also scales quadrati-

cally with the number of particles and therefore the tracker needs at least Ω(p2) units

of memory (the number of layers can be omitted here as the memory required to store

the matrix could be reused for each layer).

To reduce the problem of quadratically scaling run time and memory requirements,

the detector can be divided into buckets where each bucket holds an on average

constant amount of particles. Then, the particles in each bucket can be tracked

independently of each other. The tracker’s run time on a single bucket is then Θ(l)

and memory requirements are Θ(1). As the number of particles per bucket should

be constant, the number of buckets has to scale linearly in p, resulting in the total

number of buckets being of order Θ(p). Thus, the run time of this bucketed tracking

approach is Θ(p · l). It is important to mention here that this improved run time

complexity is only possible at the expense of tracking accuracy, as the bucketed

tracking cannot account for particles that move between buckets. Thus, it is essential

to find a bucketing strategy that minimizes the number of particles moving between

buckets - or in other words, maximizes the average track length (i.e. the number of

detector layers intercepted by a given particle) within each bucket.

32

3.3.1 θ Buckets

The first approach tested was to sort the hits into buckets by using the θ angle,

because as discussed in section 3.2.1, θ is the feature that varies the least for individual

particles. Given the number of desired buckets b, the b-quantiles with regards to the

feature θ are extracted from the event data. Then, the hits are distributed to the

buckets by assigning a hit that lies between the b-quantiles qi and qi+1 to the bucket

with the ID i (with the smallest ID being 0).

3.3.2 Approximate-Nearest-Neighbour Buckets

A second approach that was tested was splitting the hits into buckets using

approximate-nearest-neighbors with the library Annoy [34]. Approximate-nearest-

neighbours has in the past been successfully applied for finding buckets containing

long particle tracks [3]. The process for assigning the hits to the buckets is as follows:

As a first step, an index of the event data is created using Annoy. Then, a hit is

selected uniformly at random from the event data, and its k approximate-nearest-

neighbors are queried using the index. As a similarity measure, the cosine distance

is used. All found hits are assigned to a common bucket. Then, a random hit not

yet assigned to any bucket is randomly selected, and the process is continued until

all hits are assigned to a bucket. Note that using this process, the buckets are not

mutually exclusive: A single hit can be assigned to multiple buckets because it can

be contained in the k-approximate-nearest-neighborhoods of multiple hits. To reduce

complexity, mutual exclusivity is enforced on the buckets by always assigning a hit

to the last bucket it was discovered to be part of.

3.3.3 θ/φ Buckets

To improve the bucketing strategy covered in section 3.3.1, the angle φ is added as a

second criterion for the bucketing. The angle φ is suited for this, as it is the feature

that varies the second least for a single particle, as discussed in section 3.2.1. For this

bucketing approach, the hits are first sorted into bθ buckets, and these buckets are

33

then subdivided into bφ buckets each. The total number of buckets b is thus bφ · bθ.

Compared to the approach from 3.3.1, this allows the number of θ-buckets bθ to be

reduced, which is remedied by additional φ-buckets. For example, if we set b = 56,

in the approach from 3.3.1 the the θ dimension is divided into 56 buckets. If we add

bφ = 4 buckets in the φ dimension, it suffices that bθ = 14 for the same number of

total buckets b = bφ · bθ = 56.

3.3.4 Comparison

To compare the bucketing strategies, the particle track lengths within the individual

buckets were examined. Figure 3-8 shows the respective distributions. As one can

see, all bucketing strategies cause a large increase in the number of particle tracks

with only one hit. One of the reasons for this might be that a particle traversing

multiple buckets is counted multiple times in the distribution. For example, if a

single particle traverses four buckets and creates one hit in each bucket, this particle

is counted as four tracks with a single hit. The visualization indicates that the θ / φ

bucketing strategy works best, as the number of one-hit-tracks is the lowest, and it

also contains the most tracks with lengths from 11 to 13 among the three bucketing

strategies. Approximate-nearest-neighbour and θ-buckets perform worse, with the

ANN-approach seeming slightly superior to the θ-approach.

34

Figure 3-4: Run time comparison of architectures for data association. Both inference
and training times are depicted. Average run times over 10 instances

35

3UHGLFWLRQ 8SGDWH ([LVWHQFH

/670

<�
X LX��GX

LX����GX��

'HQVH

<X��

:HLJKWLQJ

%8�� >8��

/670

0XO

¿8��¿8

0XO

$GG

'HQVH

<�
X��

'HQVH

6LJPRLG

¿X��

Figure 3-5: Motion model of particle tracker. Model and graphic adapted from [27]

3L[HO�%DUUHO�0RGHO

6KRUW�6WULS�%DUUHO�0RGHO

/670

'HQVH

/670

'HQVH

<X
� ¿XLX��GX

L���G�<� ¿�

7UDQVLWLRQ�/D\HU

Figure 3-6: The transition layer manages a particle’s transition between two volumes.
Here, the pixel barrel volume and the short strip barrel volume are shown as an
example

36

3L[HO�%DUUHO�
0RGHO7UDQVLWLRQ�/D\HU

3L[HO�
1HJDWLYH�
(&�0RGHO

7UDQVLWLRQ�/D\HU
3L[HO�

3RVLWLYH�(&�
0RGHO

6KRUW�6WULS�
%DUUHO�
0RGHO

7UDQVLWLRQ�/D\HU
6KRUW�6WULS�
1HJDWLYH�
(&�0RGHO

7UDQVLWLRQ�/D\HU
6KRUW�6WULS�
3RVLWLYH�(&�

0RGHO

/RQJ�6WULS�
%DUUHO�
0RGHO

7UDQVLWLRQ�/D\HU
/RQJ�6WULS�
1HJDWLYH�
(&�0RGHO

7UDQVLWLRQ�/D\HU
/RQJ�6WULS�
3RVLWLYH�(&�

0RGHO

7UDQVLWLRQ�/D\HU

7UDQVLWLRQ�/D\HU

Figure 3-7: Graph depicting how the volumes are transitioned to for tracking the full
detector space

37

(a) No buckets (b) θ-buckets (b = 56)

(c) ANN-buckets (k = 3500) (d) θ / φ-buckets (bθ = 14, bφ = 4)

Figure 3-8: Distribution of track length per particle per bucket with different buck-
eting strategies

38

Chapter 4

Tracker Implementation

4.1 The TrackML Dataset

The collision event data was obtained from the TrackML Kaggle competition [8],

which also provides a library for loading the data and scoring tracker outputs. The

data for each event is split into four CSV files: hits, cells, particles and truth.

The hits file contains information on all measurements: Their spatial position mt,

the volume and layer they were recorded on, and a unique identifier for each hit. The

truth file includes the true positions of where the particles intercepted the individual

detector layers x̃t and the particle’s assignment to the hits. The cells file contains

more specific information on each hit, namely the exact pixels where the hits were

recorded. Finally, the particles file gives further information on each particle, like

its initial position and velocity. On average, there are about 100,000 hits created

from 9,300 particles contained in each event. For the purposes of this tracker, only

the hits and truth files were used.

Before feeding the data to the model, additionally to offline pre-processing (see sec-

tion 4.3), the data is prepared in an online-manner to bring it into the format expected

by the particle tracker: The measurements and true particle positions are stored in

tensors of constant size, with the number of particles/measurements set to the max-

imum expected number of particles/measurements. Empty spots are filled with a

row of zeros. To indicate which spots are filled and which are empty, boolean matri-

39

ces are fed to the model. Furthermore, the tensor of true particle-to-measurement-

associations Ã is created.

4.2 Model Implementation

The tracker 1 was implemented using Python with the deep learning libraries Ten-

sorflow [1] and Keras [19]. The Keras API was mostly used for higher-level code,

such as creating and compiling models, organizing the model into self-contained

layers, managing the models’ inputs and outputs, and the losses. Tensorflow, on

the other hand, was applied for lower level custom calculations, such as comput-

ing custom losses, pairwise distances, and implementing the weighting procedure

in the update step of the motion model. To reduce code complexity and support

software design best practices, such as low coupling between components, individ-

ual logical units of the tracker were implemented as self-contained subclasses of

tf.keras.layers.Layer or tf.keras.Model, depending on the context and require-

ments. For example, the motion model’s prediction step was implemented as a sub-

class of tf.keras.layers.Layer and the full motion model as a tf.keras.Model.

A major difference between Model and Layer in Keras is that a Model can be trained

on its own while a Layer can be described as a building block of a Model and there-

fore does not provide training functionality to the user. However, just like a Layer, a

Model can also be used as a component of another Model. For the tracker presented in

this thesis, this has the advantage that while both the motion model and the associa-

tion model can be trained independently, the motion model can also directly call the

association model from right within its model definition. If the motion model should

be trained independently of the association model, the motion model uses the true

particle-to-measurement-assignments instead of calling the association model. An-

other example where Models are used as part of another Model is for implementing

the approach to track particles throughout multiple volumes (as discussed in section

3.2.5), where the models for each volume represent distinct instances of Model and

1Source code available at https://gitlab.com/hofmann-master-thesis/trackml

40

https://gitlab.com/hofmann-master-thesis/trackml

are contained in another Model which arranges the individual volumes’ models in

the correct structure. This modularity also allows for easy swapping of individual

components within the models, such as changing the association model used from

LSTM-based association to the faster dense association.

4.3 Data Pre-Processing Pipeline

Before the tracker can use the data, several pre-processing steps are required, includ-

ing the computation of the angles φ and θ, the assignment of the hits to buckets,

and the normalization of the spatial dimensions. These mentioned steps are done

offline, i.e., the entire data set is transformed before any data is fed to the model.

Once a transformation of a single event is complete, it is stored on disk to free up the

memory. This also means that when a model is trained the next time, the transfor-

mations are already available on disk and do not have to be recomputed. To facilitate

offline pre-processing, the library Luigi [35] is employed, which allows the creation

of data pipelines that can be executed in parallel. For each transformation, a sepa-

rate luigi.Task is implemented, and these tasks can be combined and configured to

operate on multiple events at once:

import load_data_luigi as ld

events = ld.RootRangeDetectorFiles(start_range=1000,

end_range=1100)

events = ld.DerivedRangeDetectorFiles(create_from=events,

derive_task=ld.CreateAngles)

events = ld.DerivedRangeDetectorFiles(create_from=events,

derive_task=ld.CreateNormalized)

for event in events.load():

...

In the code example above, the events with the IDs 1000 to 1100 are transformed

to include the angles θ and φ and normalized spatial dimensions. Upon the first call

41

of the method events.load(), Luigi is invoked to build the necessary files: First,

it checks if the files corresponding to the transformations specified are already saved

on disk. If they are not, Luigi creates the files containing the transformations for all

events in parallel. Finally, the transformed events are loaded one by one and supplied

to the loop using a Python generator.

4.4 Model Management and Persistence

The management of the model structure poses special challenges because while the

model’s modules can be swapped easily, a wide variety of different model architectures

and combinations of different modules can be configured. The goal was to make

it possible to specify all model parameters and components for the entire tracker

from a single place in the code to prevent having to make changes in large parts

of the code base when re-configuring the model architecture. This was achieved

by implementing a class TrackerConfiguration, which contains the information

needed for building the model, like, for example, which architecture to use for the

association model or the number of neural units in specific components. In total, 34

distinct parameters can be configured using this class. When creating a new model,

an instance of the TrackerConfiguration class is passed to the tracker, which is then

passed on to the individual components when they are initialized. The components

then extract the parameters required for their own configuration and, if necessary,

pass the TrackerConfiguration object to their sub-components.

A second problem that is solved using the TrackerConfiguration class is per-

sistence: When saving and loading a model, it is necessary to take care of the ar-

chitecture of the model, which is saved/loaded. If model weights from a model with

mismatching architecture than the one constructed in memory are loaded, the model

will likely not perform as expected (or the weights will not load at all because the

deep learning framework recognizes the architectural mismatch). Usually, Keras of-

fers functionality to save a model’s architecture together with the weights, but for

my tracker, the framework cannot persist the model structure, likely because of the

42

high complexity of the model. Thus, only the trainable weights are saved, and when

attempting to load a model, the appropriate architecture is re-constructed first, and

then the weights are loaded into the model. This is facilitated by binding the per-

sisted weights of a given architecture to the TrackerConfiguration of this architec-

ture: The parameters in the TrackerConfiguration are hashed, and the resulting

identifier is saved in the name of the file where the persisted weights of the respective

architecture are stored.

4.5 Model Training

The training of the tracker was performed on an Nvidia GeForce GTX 1080 Ti GPU.

For training and evaluation of the models, a train-validation-test approach was em-

ployed: As training data, the events 1000-1399 were used. The models were validated

on the events 1400-1431 and tested on 1432-1479. For evaluation purposes, trackers

were trained both on particle subsets with no bucketing and full events using the θ/φ

bucketing strategy.

When training a model, the motion model was trained independently from the

association model as a first step. This was done by using the matrix of true particle-to-

measurement-associations Ãt instead of estimated association scores At. Afterwards,

the resulting motion model was combined with an association model, and the two were

trained together. This allows for faster convergence of the model. [27]

Regarding the network parameters, the number of hidden units for the recurrent

cells in the motion model was set to 200. It is important to note here that the motion

model operates on each particle independently (i.e., the particles are contained in the

batch-dimension). Thus, the number of hidden units can be set independently of the

total number of particles to track. For the dense association model, one layer of row-

wise and column-wise dense elements was employed, with the number of neural units

for rows and columns set to the number of particles and measurements, respectively.

When using LSTM association, two layers were used, and the number of hidden units

was set proportional to the number of particles. As optimizer, RMSProp [15] was

43

used, and the learning rate is set similarly as [27] does it: Initially, it is set to 0.003,

and each 20,000 training steps, it is decreased by 5% (this can be achieved in Keras

using tf.keras.optimizers.schedules.ExponentialDecay). The ρ parameter of

RMSProp is set to 0.9 and momentum to 0.0.

The hyperparameters of the loss function

L(x∗,x, ε,A, x̃, Ã, ε̃) =λ
1

n

∑
‖x∗ − x̃‖2 + κ

1

n

∑
‖x− x̃‖2+

νLε + ξε∗ − ψ
n∑
i=1

m∑
j=1

Ã[i, j] log(A[i, j])
(4.1)

were configured as follows:

• λ = 10

• κ = 10

• ν = 0.2

• ξ = 0.2 (if regularization was performed)

• ψ = 0.1

The data is fed to the model in batches containing 12 instances each. In the case

of bucketed tracking, each bucket represents a single instance.

44

Chapter 5

Evaluation & Discussion

5.1 Tracking Particle Samples

To get an idea of which model architecture and combination of components perform

well on the data set, five different architectures were trained on particle samples and

evaluated according to the measure used for scoring submissions at the TrackML

Kaggle competition [8]. This measure uses only the predicted assignment of the hits

to tracks and the actual assignment of hits to particles as input. It does not use

any other predicted information on the particles’ positions or their trajectories. The

measure is computed as follows: First, the predicted tracks are each matched to a

so-called leading particle. Such a matching happens if more than 50% of the hits

in this track belong to a single particle. If no particle can be matched using this

approach, the track is discarded and scored with 0. The track is also scored with 0 if

a track contains less than 50% of the leading particle’s hits. To compute the score,

the sum of the weights of all hits that were assigned to the correct particle and are

part of a matched track is divided by the total weights of all hits. Thus, the score

reaches 1 for a perfect assignment and is 0 for a random assignment.

The predicted assignments of the particles to the hits were computed with two

different strategies: With existence correction and without existence correction. The

assignments without existence correction are taken directly from the matrix of pre-

dicted assignments A. More precisely, each hit is assigned to the particle with the

45

highest score according to A. For finding the assignments with existence correction,

an assignment matrix A(ε) which also considers the existence scores ε is computed

first:

A(ε)[i, j] = A[i, j] · ε[i] (5.1)

The assignment is then determined by finding the maximum entry in A(ε) for each

measurement. The weighting by the existence scores ε makes an assignment to par-

ticle tracks that do not exist on a given detector layer less likely and more likely for

tracks that do exist.

For sampling particles from the event data, a random set of n particles was selected

uniformly at random from the full set of particles contained in a single event. Then,

their hits were extracted, and this data was then fed to the tracker. This allows the

tracker to be trained and evaluated at a lower particle count and particle density,

which should, on the one hand, demonstrate that the tracker can track a subset of

the full data set, but also allow one to tune the model, as the training time for a

subset is lower than the one for a full event.

5.1.1 Sample of 20 Particles

Different versions of the tracker were first evaluated on samples of 20 particles. The

results are shown in table 5.1. The tracker architectures are listed by which recurrent

structure is used in the motion model (RNN or LSTM), which approach is used in

the association model (LSTM vs. Dense), whether or not existence re-weighting is

performed in the update model (see also equation (3.9)) and whether or not the

existence regularization ε∗ is used in the loss (see equation (3.6)).

The first model tested is a re-implementation of the model proposed by [27],

adapted for particle tracking: It uses simple RNNs in the motion model, an LSTM

for association, it performs an existence re-weighting step and uses the existence

regularization term. As one can see, when calculating the average score based on

the association matrix with existence correction A(ε) (Ex. Corr.) the score is higher

than when using the regular association matrix A (No Ex. Corr.). If the existence

46

Model Avg. Tracking Score
ID Motion Assoc. Ex. Weigh. Ex. Reg. No Ex. Corr. Ex. Corr.

1 RNN LSTM Yes Yes 0.467 0.513
2 RNN LSTM Yes No 0.463 0.525
3 LSTM LSTM Yes No 0.642 0.669
4 LSTM Dense Yes No 0.638 0.664
5 LSTM Dense No No 0.613 0.660

Table 5.1: Tracking scores of different model combinations for samples of 20 particles

regularization term is omitted in the loss, as it is done in model #2, the model

gets slightly better. However, the largest gain in tracking performance comes when

replacing the RNN in the motion model with a more sophisticated LSTM, as with

model #3. It makes tracking accuracy using the assignment with existence correction

increase by about 0.14, and the one without existence correction even increases by

approximately 0.18. Model #3 has the scores maxed out. When replacing the LSTM

in the association model with the dense model or not doing existence re-weighting

(models #4 and #5), the scores without existence correction decrease, while the

scores with existence correction stay roughly the same. However, it should be noted

here that as discovered in section 3.2.2, the dense association model is significantly

faster than the one using an LSTM.

5.1.2 Sample of 200 Particles

To closer investigate the proposed algorithm’s scaling behavior, a model similar to

architecture #5 was trained on samples containing 200 particles. This is a more

challenging problem than a sample of 20 particles, not only because the tracks of more

particles have to be predicted, but also because the density of hits on each detector

layer is higher, making it harder to distinguish which hit belongs to which particle.

The results for 200 particles show a significant decrease in tracking performance to

0.202 without existence correction or 0.243 with existence correction.

47

TEVXMGPI�HMWX

QMR�JSVIMKR�HMWX

(a) Desired case

TEVXMGPI�HMWX

QMR�JSVIMKR�HMWX

(b) Undesired case

Figure 5-1: Visualization of prediction quality. Predictions are marked as crosses,
hits as circles

5.2 Tracking Full Events of About 10,000 Particles

The entire set of particles contained in one event was attempted to be tracked using

a tracker with an architecture similar to model #5 from Table 5.1 running on θ/φ

buckets with bθ = 14 and bφ = 4. Unfortunately, the tracker was not able to handle

this high number of particles. The average tracking score did not go significantly above

0.0. In comparison, the best possible theoretical tracking score, which would result

when tracking all particles perfectly within the buckets for the bucketing approach

used, would be approximately 0.816. A possible reason why the tracker performs this

way on the full set of particles is given in the following section.

5.3 Accuracy Considerations

5.3.1 Performance on the Full Data Set

To explain why running the tracker on the full data set yields this unsatisfying result,

a closer evaluation of the quality of the particle state predictions was performed. To

explain the main criterion of this evaluation, let us first consider Figure 5-1. In these

graphs, predictions are marked as crosses and hits as circles. On the left figure, the

desired case, the particle state prediction is closer to the respective particle’s hit on

this detector layer than to the next hit of a foreign particle. Thus, the distance to the

particle’s own hit (particle-dist) is smaller than the distance to the closest foreign hit

48

(a) 20 particles (b) 200 particles (c) Full set of particles

Figure 5-2: Minimum distances vs. particle distances for three event sizes (log scale)

(min-foreign-distance). In the context of tracking, it is desired that particle-dist is

smaller than min-foreign-dist, because this means that it is straightforward to assign

the particle to the correct hit, namely by choosing that hit which is closest to the

particle’s prediction. If, however, the particle-dist is larger than the min-foreign-dist,

one can expect that, while not always impossible, it is much harder to assign the

particle to the correct hit.

To reduce complexity, the evaluation of the quality of an LSTM’s prediction of the

particle states was not performed on the full tracker, but on a simpler architecture

consisting only of an LSTM which receives the particle’s states on the first three

layers of the pixel barrel volume as input and should then predict the states on the

fourth layer. To map the LSTM’s internal state to the particle state vector, a dense

neural layer is employed. Figure 5-2 displays the relations between particle-dist on

the x-axis and min-foreign-dist on the y-axis for three different particle samples as a

contour plot. If a particle prediction is located in the upper left half of the graph, the

particle-dist for this prediction is lower than the min-foreign-dist, i.e., this particle

represents an example of the desired case. If, however, it is in the lower right half, the

min-foreign-dist is lower than the particle-dist, and therefore this particle represents

the undesired case. For 20 particles, all predictions are found in the upper left, i.e.,

represent the desired case. For 200 particles, while some particles are in the lower

right, i.e., the undesired case area, the majority still lies in the upper left area. This

can also explain our results from tracking particle samples: The model was able

49

(a) Tracks starting from innermost layer (b) Tracks starting from other layers

Figure 5-3: Tracking score only considering tracks starting from specific areas of the
detector (sample of 20 particles)

to track 20 particles well and could still track a sample of 200 particles partially.

However, when looking at the full set of particles, it becomes evident why the tracker

has such a hard time tracking this massive amount of particles: For the largest part,

the predictions from the LSTM are actually closer to a foreign hit than to the own

hit of the particle. For common RNNs, similar results as the ones from LSTM were

obtained. Arguably, this makes it very hard, if not impossible, for the association

model to assign each prediction to the correct hit. It must be stressed that this result

is produced by an LSTM that only looks at the time series of the true particle states

on the first three layers, without any added complexity from bucketing approaches

or association models. It can be argued that LSTMs, in general, seem to have a

hard time predicting the particles’ states at a level of accuracy that is necessary at

these high particle densities. Therefore, it can be argued that this result represents

an upper bound of what the full tracker with an LSTM can achieve, as the shortened

tracks resulting from bucketing or the soft assignments produced by the association

model would introduce additional uncertainty to the tracker.

5.3.2 Recognizing New Tracks

Another aspect that was evaluated is how the tracker performs on tracks that do

not start in the detector’s innermost layer, but which originate from some other

50

layer in the detector. These newly created tracks are caused by so-called hadronic

interactions, where charged hadrons interact with the detector material, such that the

initial particle is destroyed, and a spray of new particles is created [32]. The authors

of [27] claim that their tracker, which was adapted for particle tracking in this thesis,

can recognize new tracks using the birth/death step. This indicates that the tracker

could also be able to identify the tracks created from these hadronic interactions.

To evaluate this, Figure 5-3 compares the tracking score for 20 particles when only

considering tracks starting in the innermost layer to tracks starting at some other

place in the detector. The figure shows that the model can track particles originating

from the center way better than those created within the detector layers. The average

accuracy (with existence correction) for former particles is 0.877, while for the latter,

it is only 0.433. On the positive side, this indicates that the model can track particles

originating from the center quite well; on the negative, it seems that the model is not

that good at recognizing new tracks, at least for the application of particle tracking.

5.4 Discussion

The goal of this thesis was to find out if it is possible to learn the task of tracking

particles entirely from data. The tracker proposed in this thesis was able to track

event-subsets from the data set of the TrackML competition [8], which demonstrates

that with enough data, it is indeed possible for a machine to learn physical models on

its own. Furthermore, it could be shown that tracking approaches from visual MOT,

which aim to track objects in a video sequence, can also be adapted and applied to

the particle tracking problem. The neural architecture of the algorithm selected for

adaptation has been further developed, which improved both accuracy and run time

for the particle tracking task. Besides, this thesis contributes a bucketing strategy,

which allows particles to be tracked in significantly less than quadratic time, and

which penalizes accuracy instead of run time with increased particle count. While

the algorithm was able to scale to larger particle counts of about 10,000 particles in

terms of run time, it could not do so with respect to accuracy. To explain this result,

51

it was demonstrated that particle state predictions performed by LSTMs seem to be

too inaccurate for a tracker to distinguish between particle tracks at such high particle

densities correctly. To the best of the author’s knowledge, there is no scientifically

published deep learning-based algorithm that achieves good accuracy on these high

particle densities. The only other DL-algorithm for particle tracking published [38]

is evaluated on a maximum of 22 particles, while the algorithm presented in this

paper was able to scale to up to 200 particles with some accuracy. While not being

able to scale to a particle count of 10,000, it could still be shown that a model from

computer vision can be adapted to track particles. Thus, it was demonstrated that

deep neural networks can capture physical phenomena; in this case, the trajectories

of particles through space. It would be interesting to see if and how machine learning

and deep neural networks can model further physical interactions other than particles’

trajectories. Being able to learn physical models from data could arguably be a very

useful tool for physicists.

52

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, I have explained the task of particle tracking, have discussed similar

problems to the particle tracking problem that reside in other scientific realms, like the

area of multiple object tracking (MOT) in computer vision, and have compared them

to particle tracking. I have given an overview of how particle tracking is currently

done at the CERN ATLAS detector. I have reviewed how recurrent neural networks

are built, given a glimpse of LSTM as a version of RNN that is better at learning

long-time dependencies, and explained why the usage of RNNs can be beneficial

to the particle tracking task. I have described promising approaches for tracking

multiple objects using recurrent neural networks from the research areas computer

vision, bio-medicine, and particle physics and selected one approach that seemed

the most promising for the particle tracking task. After some adaptations, like the

tracked features, the ability to track throughout orthogonal detector volumes, using

an LSTM for target motion, and an adapted model for data association, the tracker

was implemented in Python with Tensorflow and Keras. The model’s evaluation

showed promising results for smaller sets of particles. Hence the model was adapted

for tracking events with a larger number of particles (7,000 - 12,000), as they are

provided in the Kaggle TrackML challenge [8] using a bucketed scaling approach.

Unfortunately, the model was not able to accurately scale to this large data set sizes,

53

likely because RNNs and LSTMs were not able to predict a particle’s position to a

level of accuracy that is required for these high particle densities. Nonetheless, the

thesis shows that, up to a certain extent, neural networks can capture the physics of

particle trajectories only by learning from data.

6.2 Future Work

An obvious possibility for future work is to further investigate the scaling to the full

data set. As the LSTM’s state predictions seem to lack accuracy for this application,

a possibility could be to perform the state predictions using other, possibly non-

recurrent neural networks. Another possibility that could be investigated is using

other distance functions for computing the pairwise distance between particle state

predictions and hits. The tracker presented in this thesis employs the widely used

Euclidean distance for this task. Instead, one could try to use the pairwise distance

on learned embeddings of the predicted states and the hits, which could reduce the

distance between a predicted particle state and its hit. Finally, one could also think

of an approach similar to the Combinatorial Kalman Filter (see section 2.2.1), in

which the neural network does not create a single track for one particle, but is also

able to give birth to multiple track candidates if it encounters multiple hits which

could likely be part of the particle’s track. The best track candidates could then be

selected using some - possibly learned - quality measure that estimates how likely a

track candidate is produced by a particle.

54

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-

icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,

R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,

Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,

Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,

M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] AI United Redaktion. Recurrent neural networks und LSTM — künstliche

intelligenz - ki und machine learning by ai-united. http://www.ai-united.de/

recurrent-neural-networks-und-lstm/, n.d. [Online, Accessed 29-August-

2020].

[3] Amrouche, S., Golling, T., Kiehn, M., Plant, C., and Salzburger,

A. Similarity hashing for charged particle tracking. In 2019 IEEE International

Conference on Big Data (Big Data) (2019), pp. 1595–1600.

[4] Anton Milan. Dimensional mismatch in dot-product.

https://bitbucket.org/amilan/rnntracking/issues/26/

dimensional-mismatch-in-dot-product, 2018. [Online, Accessed 17-

August-2020].

55

http://www.ai-united.de/recurrent-neural-networks-und-lstm/
http://www.ai-united.de/recurrent-neural-networks-und-lstm/
https://bitbucket.org/amilan/rnntracking/issues/26/dimensional-mismatch-in-dot-product
https://bitbucket.org/amilan/rnntracking/issues/26/dimensional-mismatch-in-dot-product

[5] Babenko, B., Yang, M., and Belongie, S. Robust object tracking with

online multiple instance learning. IEEE Transactions on Pattern Analysis and

Machine Intelligence 33, 8 (2011), 1619–1632.

[6] Blackman, S. S. Multiple hypothesis tracking for multiple target tracking.

IEEE Aerospace and Electronic Systems Magazine 19, 1 II (2004), 5–18.

[7] Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., and

Gool, L. V. Robust tracking-by-detection using a detector confidence particle

filter. In 2009 IEEE 12th International Conference on Computer Vision (2009),

pp. 1515–1522.

[8] CERN. TrackML Particle Tracking Challenge. https://www.kaggle.com/c/

trackml-particle-identification, 2018. [Online, Accessed 08-May-2020].

[9] CERN. High Luminosity LHC. https://home.cern/science/accelerators/

high-luminosity-lhc, 2020. [Online, Accessed 08-May-2020].

[10] CERN Education Communication and Outreach Group. The

LHC FAQ Guide. http://cds.cern.ch/record/2255762/files/

CERN-Brochure-2017-002-Eng.pdf, 2017. [Online, Accessed 08-May-2020].

[11] Connor, J. T., Martin, R. D., and Atlas, L. E. Recurrent Neural Net-

works and Robust Time Series Prediction. IEEE Transactions on Neural Net-

works 5, 2 (1994), 240–254.

[12] Cornelissen, T., Elsing, M., Fleischmann, S., Liebig, W., Moyse, E.,

and Salzburger, A. Concepts, Design and Implementation of the ATLAS

New Tracking (NEWT). Tech. Rep. ATL-SOFT-PUB-2007-007. ATL-COM-

SOFT-2007-002, CERN, Geneva, Mar 2007.

[13] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In

Proceedings of the Second International Conference on Knowledge Discovery and

Data Mining (1996), KDD’96, AAAI Press, p. 226–231.

56

https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification
https://home.cern/science/accelerators/high-luminosity-lhc
https://home.cern/science/accelerators/high-luminosity-lhc
http://cds.cern.ch/record/2255762/files/CERN-Brochure-2017-002-Eng.pdf
http://cds.cern.ch/record/2255762/files/CERN-Brochure-2017-002-Eng.pdf

[14] Frühwirth, R. Application of Kalman filtering to track and vertex fitting.

Nuclear Inst. and Methods in Physics Research, A 262, 2-3 (1987), 444–450.

[15] Hinton, G., Srivastava, N., and Swersky, K. Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent, 2012.

[16] Hochreiter, S. Untersuchungen zu dynamischen neuronalen netzen. Master’s

thesis, Institut fur Informatik, Technische Universitat, München, 1991.

[17] Hochreiter, S., and Schmidhuber, J. J. Long short-term memory. Neural

Computation 9, 8 (1997), 1–32.

[18] Kalman, R. E. A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering 82, 1 (1960), 35.

[19] Keras Team. Keras: the python deep learning API. https://keras.io, 2016-

2020. [Online, Accessed 26-August-2020].

[20] Kim, C., Li, F., Ciptadi, A., and Rehg, J. M. Multiple hypothesis tracking

revisited. In 2015 IEEE International Conference on Computer Vision (ICCV)

(2015), pp. 4696–4704.

[21] Kuhn, H. W. The hungarian method for the assignment problem. Naval re-

search logistics quarterly 2, 1-2 (1955), 83–97.

[22] Leal-Taixé, L., and Canton-Ferrer, C. Learning by tracking: Siamese

cnn for robust target association. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW) (2016), pp. 418–425.

[23] Li, X., Wang, K., Wang, W., and Li, Y. A multiple object tracking method

using kalman filter. In The 2010 IEEE International Conference on Information

and Automation (2010), pp. 1862–1866.

[24] Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Zhao, X., and Kim,

T.-K. Multiple Object Tracking: A Literature Review. ArXiv eprints (2017).

57

https://keras.io

[25] Mankel, R. A concurrent track evolution algorithm for pattern recognition

in the HERA-B main tracking system. Nuclear Instruments and Methods in

Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associ-

ated Equipment 395, 2 (1997), 169–184.

[26] Milan, A., Leal-Taixe, L., Reid, I., Roth, S., and Schindler, K.

Mot16: A benchmark for multi-object tracking. ArXiv eprints (2016).

[27] Milan, A., Rezatofighi, H., Dick, A., and Reid, I. Online multi-target

tracking using recurrent neural networks. ArXiv eprints (2016).

[28] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., and Riedmiller, M. Playing atari with deep reinforcement

learning. ArXiv eprints (2013).

[29] Padfield, D., Rittscher, J., and Roysam, B. Coupled minimum-cost flow

cell tracking for high-throughput quantitative analysis. Medical Image Analysis

15, 4 (2011), 650–668.

[30] Possegger, H., Mauthner, T., and Bischof, H. In defense of color-based

model-free tracking. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2015).

[31] Reid, D. B. An algorithm for tracking multiple targets. Automatic Control,

IEEE Transactions on 24, 6 (1979), 843–854.

[32] Rousseau, D., Amrouche, S., Calafiura, P., Farrell, S., Germain,

C., Gligorov, V. V., Golling, T., Gray, H., Guyon, I., Hushchyn, M.,

Hrdinka, J., Innocente, V., Kiehn, M., Salzburger, A., Ustyuzhanin,

A., Vlimant, J.-R., and Yilmaz, Y. Particle Tracking Machine Learning

Challenge: Detector and Dataset, 2018.

[33] Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K.,

and Soman, K. P. Stock price prediction using lstm, rnn and cnn-sliding

58

window model. In 2017 International Conference on Advances in Computing,

Communications and Informatics (ICACCI) (2017), pp. 1643–1647.

[34] Spotify. GitHub - spotify/annoy: Approximate nearest neighbors in

c++/python optimized for memory usage and loading/saving to disk. https:

//github.com/spotify/annoy, 2013-2020. [Online, Accessed 25-August-2020].

[35] Spotify. GitHub - spotify/luigi: Luigi is a python module that helps you

build complex pipelines of batch jobs. it handles dependency resolution, work-

flow management, visualization etc. it also comes with hadoop support built in.

https://github.com/spotify/luigi, 2014-2020. [Online, Accessed 26-August-

2020].

[36] Stalder, S., Grabner, H., and Van Gool, L. Cascaded confidence fil-

tering for improved tracking-by-detection. In Proceedings of the 11th European

conference on Computer vision: Part I (2010), vol. 6311, pp. 369–382.

[37] Sun, Y., Liang, D., Wang, X., and Tang, X. DeepID3: Face Recognition

with Very Deep Neural Networks. ArXiv eprints (2015).

[38] Tsaris, A., Anderson, D., Bendavid, J., Calafiura, P., Cerati, G.,

Esseiva, J., Farrell, S., Gray, L., Kapoor, K., Kowalkowski, J.,

Mudigonda, M., Spentzouris, P., Spiropoulou, M., Vlimant, J.-r.,

Zheng, S., and Zurawski, D. The HEP. TrkX Project : Deep Learning for

Particle Tracking. In Proceedings, Connecting The Dots / Intelligent Tracker

(CTD/WIT 2017) (2018).

[39] Wojke, N., Bewley, A., and Paulus, D. Simple online and realtime track-

ing with a deep association metric. In 2017 IEEE International Conference on

Image Processing (ICIP) (2017), pp. 3645–3649.

[40] Yao, Y., Smal, I., and Meijering, E. Deep neural networks for data as-

sociation in particle tracking. In 2018 IEEE 15th International Symposium on

Biomedical Imaging (ISBI 2018) (2018), pp. 458–461.

59

https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/luigi

[41] Zhang, L., Li, Y., and Nevatia, R. Global data association for multi-object

tracking using network flows. In 26th IEEE Conference on Computer Vision and

Pattern Recognition, CVPR (2008).

[42] Zhang, L., and van der Maaten, L. Structure preserving object tracking.

In 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013),

pp. 1838–1845.

60

Appendices

61

62

Appendix A

Abstract

A.1 Deutsch

Diese Arbeit behandelt einen neuen, auf Deep Learning basierenden Algorithmus

für Particle Tracking, der nur auf Basis von Daten gelernt werden kann. Parti-

cle Tracking ist ein Problem aus der Hochenergiephysik, wobei Materieteilchen in

großen Teilchenbeschleunigern, wie dem LHC am CERN, innerhalb eines Teilchende-

tektors zur Kollision gebracht werden. Durch diese Kollisionen werden neue Teilchen

geschaffen, welche vom Detektor an mehreren Orten gemessen und aufgezeichnet wer-

den. Diese Aufzeichnungen werden auch ”Hits” genannt. Ein Particle Tracker hat

nun die Aufgabe, alle Hits, die von einem einzelnen Teilchen stammen, zu verbinden

und so die Flugbahn des Teilchens zu rekonstruieren. Der Tracker, der in dieser Ar-

beit vorgestellt wird, basiert auf einem existierenden Ansatz aus dem Bereich der

Computer Vision, mit dem Objekte, wie zum Beispiel Personen, innerhalb eines

Videos getrackt werden können. Der Tracker kann eine kleinere Anzahl an Teilchen

gleichzeitig verfolgen. Dabei verwendet er End-To-End Learning, also das Lernen

alleine auf Basis von Daten und ohne auf explizit implementierte physikalische Mod-

elle zurückzugreifen. Es wird erörtert, was den Tracker daran hindert, auf sehr hohe

Teilchendichten zu skalieren, und mögliche Lösungen werden vorgeschlagen.

63

A.2 English

This thesis presents a novel, deep learning-based algorithm for particle tracking, which

can be learned entirely from data. Particle tracking is a problem in high energy

physics, where matter particles are accelerated in large particle accelerators, like the

LHC at CERN, and then brought to collision within a particle detector. Upon these

collisions, new particles are created, which are recorded by the detector at multiple

locations. These recordings are called hits. A particle tracker fulfills the task of

connecting all hits originating from a single particle to form the particle’s trajectory.

The tracker presented in this thesis is based on an approach from computer vision,

where objects, like persons, are tracked in a video sequence. The presented tracker

can track smaller amounts of particles simultaneously using end-to-end learning, i.e.,

the task of particle tracking is learned only from data and without any explicitly

implemented physical models. Possible reasons hindering the tracker from scaling to

very large particle densities are explored, and possible solutions suggested.

64

Appendix B

Notation and Symbols

At Estimated probability matrix of object-measurement associations at time t.

Ãt Binary matrix representing the true object-measurement associations.

Dt Pairwise distance matrix between predicted object / particle states and detec-

tions / measurements at time t

εt Estimated probability of an object / a particle existing at time t

ε̃t ∈ {0, 1}: 1, if an object / a particle exists at time t, 0 otherwise

εt Vector of εt for all tracked objects / particles

ε̃t Vector of ε̃t for all tracked objects / particle

ε∗ Existence regularization term: ε∗t = |εt − εt−1|

Mt State vector matrix of detections / measurements at time t

mt State vector of a single detection / measurement at time t

Xt Matrix of all objects’ / particles’ estimated state vectors at time t given the

measurements

xt A single object’s / particle’s estimated state vector at time t given the measure-

ments

65

x∗
t A single object’s / particle’s estimated state vector at time t not given the

measurements

X∗
t Matrix of all objects’ / particles’ estimated state vectors at time t not given the

measurements

x̃t A single object’s / particle’s true state vector at time t

66

Appendix C

List of Abbreviations

ANN Approximate nearest neighbour

API Application programming interface

CERN European Organization for Nuclear Research

CKF Combinatorial Kalman Filter

CNN Convolutional neural network

DL Deep Learning

EC End-cap (end-cap discs in the particle detector)

LHC Large Hadron Collider (particle collider located at CERN)

LSTM Long short-term memory

RNN Recurrent neural network

MOT Multiple object tracking, used in this thesis for referring to visual tracking

NN Neural network

67

	Introduction
	Motivation
	The Task of Particle Tracking
	Detector Structure
	Challenges in the Context of Machine Learning Research
	Notation

	Related Work
	Tracking Multiple Objects
	Other Applications

	The Kalman Filter as an Existing Approach to Particle Tracking
	The Combinatorial Kalman Filter

	Recurrent Neural Networks
	Long Short-Term Memory

	Tracking Approaches using Neural Networks
	Tracking-by-Detection with End-To-End Learning
	An Approach from Biomedicine
	The HEP. TrkX Project
	Deep Learning-Based Appearance Model

	Tracker Design
	Selection of Tracking Approach to be Adapted for Particle Tracking
	Adaptability
	Tracking Performance Outlook
	Run Time Performance Outlook
	Decision

	Tracker Adaptations
	Tracked Features
	Association Model
	Loss
	Motion Model
	Tracking Particles throughout Different Volumes

	Scaling Ideas
	 Buckets
	Approximate-Nearest-Neighbour Buckets
	/ Buckets
	Comparison

	Tracker Implementation
	The TrackML Dataset
	Model Implementation
	Data Pre-Processing Pipeline
	Model Management and Persistence
	Model Training

	Evaluation & Discussion
	Tracking Particle Samples
	Sample of 20 Particles
	Sample of 200 Particles

	Tracking Full Events of About 10,000 Particles
	Accuracy Considerations
	Performance on the Full Data Set
	Recognizing New Tracks

	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Abstract
	Deutsch
	English

	Notation and Symbols
	List of Abbreviations

