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Abstract

Out-of-distribution (OOD) detection is crucial for real-world machine learning.
Outlier exposure methods, which use auxiliary outlier data, can significantly en-
hance OOD detection. We present Hopfield Boosting, a boosting technique em-
ploying modern Hopfield energy (MHE) to refine the decision boundary between
in-distribution (ID) and OOD data. Our method focuses on challenging outlier
examples near the decision boundary, achieving a 40% improvement in FPR95 on
CIFAR-10, setting a new state-of-the-art in OOD detection with outlier exposure.

1 Introduction

Effective out-of-distribution (OOD) detection is vital for real-world machine learning systems, as they
inevitably encounter data different from their training distribution, which can lead to overconfident
and wildly incorrect predictions after deployment. In this paper, we introduce Hopfield Boosting, a
novel OOD detection approach that harnesses the energy component of modern Hopfield networks
(MHNs; Ramsauer et al., 2021).

In contrast to previous work, which employs modern Hopfield energy (MHE) only at model inference
(Zhang et al., 2022), our method uses an auxiliary outlier data set (AUX) to boost the model’s OOD
detection capacity during training. Hopfield Boosting improves OOD detection by allowing to learn a
boundary around the in-distribution (ID) data during training.

2 Related Work

Out-of-distribution detection. One common OOD detection method uses statistics from a classifier
trained on ID data, like maximum softmax probability (MSP; Hendrycks & Gimpel, 2017) or the
classifier’s energy score (Liu et al., 2020). Zhang et al. (2022) introduced an OOD detection approach
that incorporates MHE, leveraging the entire training data. However, their method doesn’t utilize
AUX data for additional discrimination.

Various approaches, such as Hendrycks et al. (2019b); Liu et al. (2020); Chen et al. (2021), and
Ming et al. (2022), incorporate AUX data to enhance their OOD detection capabilities, leveraging
additional information. Usually, only a small subset of AUX samples shares semantic similarity with
the ID data, as most are easily distinguishable from it. Some methods, like Chen et al. (2021) and
Ming et al. (2022) intentionally select samples near the OOD decision boundary for training, ensuring
tighter encapsulation of the ID data.
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Figure 1: Conceptual depiction of Hopfield Boosting.The first step (weight) creates a minibatch-
sample, and thereby weak learners, first by choosing in-distribution samples (ID, orange) without
replacement and second by choosing out-of-distribution samples (OOD, blue) with replacement
according to their assigned probabilities. The second step (evaluate) computes a composite loss for
the resulting predictions (Section 3). And, the third step (update) assigns new probabilities to the
OOD samples according to their position on the hypersphere (see Figure 4).

Boosting-based classification. Boosting, in particular, AdaBoost (Freund & Schapire, 1995),
directs ensemble learning toward challenging, hard-to-classify data instances. These challenging
instances often lie near the maximum margin hyperplane (Rätsch et al., 2001), akin to support vectors
in support vector machines (Cortes & Vapnik, 1995).

3 Method

OOD detection framework. The task of OOD detection is usually formulated as a binary classifi-
cation problem with the classes ID and OOD. It is common practice to use a threshold γ on a score
s(ξ) to decide whether a given sample ξ is ID or OOD. The estimated class B̂ can then be decided by

B̂(ξ, γ) =

{
ID if s(ξ) ≥ γ

OOD if s(ξ) < γ
(1)

It is common to select γ to ensure 95% of new ID samples are correctly classified and to then evaluate
the false positive rate on OOD data (FPR95). Metrics like the area under the receiver operating
characteristic (AUROC) can be computed directly without the need to specify γ.

Modern Hopfield energy. Given N d-dimensional stored patterns (x1,x2, . . . ,xN ) arranged in a
matrix X , and a d-dimensional query ξ, we define the MHE (Ramsauer et al., 2021) as

E(ξ;X) = − lse(β,XT ξ) +
1

2
ξT ξ + β−1 logN +

1

2
M2. (2)

where M is the largest norm of a pattern: M = maxi ||xi||; and lse is the log-sum-exponential:
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lse(β,x) = β−1 log

(
N∑
i=1

exp(βxi)

)
(3)

Outlier exposure with MHE. In this section, we will introduce how to shape the energy function
to improve the detection of patterns outside the model’s training distribution. We train a classifier on
the ID data using the standard cross-entropy loss and add an OOD loss that uses the AUX data set (as
in Hendrycks et al., 2019b; Liu et al., 2020; Ming et al., 2022):

L = LCE + λLOOD (4)

We employ a novel OOD loss motivated by MHE. Given an arbitrary sample ξ ∈ Rd that does not
necessarily have to be contained in I and O, the per-sample OOD loss LOOD(ξ) is defined as

LOOD(ξ) = − 2 lse(β, (I ∥O)T ξ) + lse(β, IT ξ) + lse(β,OT ξ) (5)

where I contains ID patterns, O contains AUX patterns, and (I ∥O) denotes the concatenation of
the patterns I and O along the axis of the samples. Appendix B.1 displays the energy landscape
of LOOD(ξ) using exemplary data on a 3-dimensional sphere. The loss is maximal at the boundary
between ID and AUX data and decreases with increasing distance from the decision boundary in both
directions. We average the per-sample OOD loss over the samples in I and O:

LOOD =
1

2N

∑
ξ∼(I∥O)

LOOD(ξ) (6)

When training a model, we feed batches of N ID samples and N AUX samples to the model and
compute the loss using the pairwise similarity matrix. N can be much smaller than the sizes of the
full ID or AUX data sets. We normalize the sample vectors in I , O and ξ to unit length.

Weight updates. An integral aspect of Hopfield Boosting is the use of weighted samples, akin to
AdaBoost (Freund & Schapire, 1995). For an illustrative example of the mechanism, we refer to
Appendix B.2. We assign weights, denoted as w, to each training sample from the AUX data set
O, which collectively form the weight vector wt. Initially, all weight values are set to w1 = 1/|O|.
These weights guide the sampling of mini-batches from O during training. We update wt based on
the per-sample loss LOOD(ξ) for all training samples ξ, aggregated into the matrix Ξ. The resultant
loss vector LOOD(Ξ) gives the updated weights through normalization by softmax:

wt+1 = softmax(βLOOD(Ξ)) (7)

Algorithm 1 Hopfield Boosting

Require: T , N , I , O, LCE, LOOD, β
Set all weights w1 to 1/|O|
for t = 1 to T do

1. Weight. Get hypothesis ht : Is ∥Os → {ID,OOD} by
1.a. Minibatch sampling Is from I , and
1.b. Sub sampling Os from O according to the weighting wt.

2. Evaluate. Compute composite loss from Equation (4) on Is and Os.
3. Update. Adapt constituents for the next iteration: Update model:

3.a. At every step, update the full model (backbone, classification head, and MHE).
3.b. At every t ∗N step calculate new weights for O with wt+1 = softmax(βLOOD(Ξ)).

end for

Summary - Algorithm. Algorithm 1 outlines Hopfield Boosting’s process, with each iteration t
comprising three steps: Weight, evaluate, and update. We start by randomly sampling a mini-batch
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Table 1: Comparison of OOD detection performance on CIFAR-10 of Hopfield Boosting compared
to POEM (Ming et al., 2022), EBO (Liu et al., 2020), and MSP-OE (Hendrycks et al., 2019b) on
a ResNet-18 encoder. ↓ indicates "lower is better" and ↑ indicates "higher is better". Standard
deviations are estimated across five independent training runs.

Hopfield Boosting (ours) POEM EBO MSP-OE
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
SVHN 0.23±0.08 99.57±0.06 1.48±0.68 99.33±0.15 2.67±1.01 99.15±0.26 4.31±1.23 99.20±0.17

LSUN-Crop 0.82±0.20 99.40±0.05 4.02±0.91 98.89±0.15 6.82±0.83 98.43±0.11 7.01±1.28 98.83±0.16

LSUN-Resize 0.00±0.00 99.98±0.02 0.00±0.00 99.88±0.12 0.00±0.00 99.98±0.02 0.00±0.00 99.96±0.00

Textures 0.16±0.02 99.85±0.01 0.49±0.04 99.72±0.05 1.11±0.18 99.61±0.02 2.29±0.18 99.57±0.02

iSUN 0.00±0.00 99.97±0.02 0.00±0.00 99.87±0.12 0.00±0.00 99.98±0.02 0.00±0.00 99.96±0.00

Places 365 4.28±0.26 98.51±0.11 7.7±0.68 97.56±0.26 11.77±0.76 96.39±0.33 21.42±0.98 95.91±0.19

Mean 0.92 99.55 2.28 99.21 3.73 98.92 5.84 98.91

from the ID data set and weighting the OOD data set based on wt. Next, we evaluate the composite
loss on the mini-batch. Lastly, we update model parameters and, every N th step, refresh the AUX
data set weights wt+1.

Inference. At inference time, the OOD score s(ξ) is computed as

s(ξ) = − E(ξ; I) = lse(β, IT ξ)− 1

2
ξT ξ − β−1 logN − 1

2
M2 (8)

We compute the score s(ξ) using the full ID data set I . For inference, performance improves when
vectors in I and ξ remain unnormalized. We believe that this is because the norms learned by LCE
contain information that is valuable for OOD detection. This is in contrast to optimizing LOOD, where
missing vector normalization leads to steadily increasing vector norms (see Appendix B.4).

4 Experiments

4.1 Setup

For training and evaluation, following Ming et al. (2022), we train our OOD detection approach
using a ResNet-18 (He et al., 2016) encoder on CIFAR-10 (Krizhevsky, 2009) as the ID data set. As
the AUX data set, we utilize a downsampled version of ImageNet-RC (Chrabaszcz et al., 2017). To
assess OOD detection performance, we employ various OOD data sets with distributions different
from both the ID and AUX data sets. For evaluation, we calculate scores s(ξ) as defined in Equation
(8) and assess the discriminative power of s(ξ) between CIFAR-10 and the OOD data sets using the
false positive rate at 95% true positives (FPR95) and AUROC.

The network trains for 100 epochs. In each epoch, the model sees the full ID data set and a selection of
AUX samples (sampled according to wt). We sample mini-batches of size 128 per data set, resulting
in a total batch size of 256. We evaluate the composite loss for each mini-batch and update the model
accordingly. After an epoch, we update the sample weights wt+1 on 500,000 AUX data instances.
During this process, we do not compute gradients or update model parameters. For these weight
updates, we fill I and O with the full ID data set and a portion of the AUX data set of equal size.

4.2 Results

We compared Hopfield Boosting with three other OOD detection approaches that also use an auxiliary
outlier data set: MSP-OE (Hendrycks et al., 2019a), EBO (Liu et al., 2020), and POEM (Ming et al.,
2022), which was the previous top-performing method with outlier exposure.

The CIFAR-10 results are summarized in Table 1. Hopfield Boosting achieves equal or superior
performance to the other methods in the FPR95 metric on all OOD data sets, outperforming POEM
by 40% on the average per-data set FPR95 results. Applying our LOOD only slightly impacts ID
classification performance, reducing it from 95.07% without LOOD to 93.38% with LOOD.
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5 Conclusion

We introduced Hopfield Boosting, an outlier exposure approach for OOD detection that uses MHE
to boost a classifier between ID and OOD data, focusing on samples near the decision boundary.
Our experiments on an established OOD detection benchmark show Hopfield Boosting as the new
state-of-the-art.

We demonstrated how the Hopfield energy-based OOD loss shapes the loss surface, forming a
decision boundary between in-distribution and outlier data. Additionally, we showcased how the
boosting mechanism sharpens this boundary more effectively than random sampling.
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A Details on Continuous Modern Hopfield Networks

The following arguments are adopted from Fürst et al. (2022) and Ramsauer et al. (2021). Associative
memory networks have been designed to store and retrieve samples. Hopfield networks are energy-
based, binary associative memories, which were popularized as artificial neural network architectures
in the 1980s (Hopfield, 1982, 1984). Their storage capacity can be considerably increased by
polynomial terms in the energy function (Chen et al., 1986; Psaltis & Park, 1986; Baldi & Venkatesh,
1987; Gardner, 1987; Abbott & Arian, 1987; Horn & Usher, 1988; Caputo & Niemann, 2002; Krotov
& Hopfield, 2016). In contrast to these binary memory networks, we use continuous associative
memory networks with far higher storage capacity. These networks are continuous and differentiable,
retrieve with a single update, and have exponential storage capacity (and are therefore scalable, i.e.,
able tackle large problems; Ramsauer et al., 2021).

Formally, we denote a set of patterns {x1, . . . ,xN} ⊂ Rd that are stacked as columns to the matrix
X = (x1, . . . ,xN ) and a state pattern (query) ξ ∈ Rd that represents the current state. The largest
norm of a stored pattern is M = maxi ∥xi∥. Then, the energy E of continuous Modern Hopfield
Networks with state ξ is defined as (Ramsauer et al., 2021)

E = − β−1 log

(
N∑
i=1

exp(βxT
i ξ)

)
+

1

2
ξT ξ + C, (9)

where C = β−1 logN + 1
2 M2. For energy E and state ξ, Ramsauer et al. (2021) proved that the

update rule

ξnew = X softmax(βXT ξ) (10)

converges globally to stationary points of the energy E and coincides with the attention mechanisms
of Transformers (Vaswani et al., 2017; Ramsauer et al., 2021).

The separation ∆i of a pattern xi is its minimal dot product difference to any of the other patterns:

∆i = min
j,j ̸=i

(
xT
i xi − xT

i xj

)
. (11)

A pattern is well-separated from the data if ∆i is above a given threshold (specified in Ramsauer et al.,
2021). If the patterns xi are well-separated, the update rule Equation 10 converges to a fixed point
close to a stored pattern. If some patterns are similar to one another and, therefore, not well-separated,
the update rule converges to a fixed point close to the mean of the similar patterns.

The update rule of a Hopfield network thus identifies sample–sample relations between stored patterns.
This enables similarity-based learning methods like nearest neighbor search (see Schäfl et al., 2022),
which Hopfield Boosting leverages to detect samples outside the distribution of the training data.

B Toy Examples

This section presents examples to illustrate the main intuitions of Hopfield Boosting. For illustration
purposes, the examples do not consider the inlier classification task — i.e., the first term on the
right-hand side of equation (4).

B.1 3D visualizations of the OOD Loss

The first example is a 3D sphere that depicts the behavior of the OOD loss (Figure 2). To show
how inliers and outliers shape the OOD loss surface, we generated the patterns so that I clusters
around the pole while the many outliers populate the large reminding perimeters of the sphere. This
is analogous to the idea that one has access to a large AUX data set, where some are more and some
less informative for OOD detection (as, for example, conceptualized in Chen et al., 2021; Ming et al.,
2022).
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(a) Out-of-Distribution Loss (b) Unnormalized Probability Density

Figure 2: Depiction of the LOOD(ξ) mechanism for separting inliers from outliers. Plot (a) shows
LOOD(ξ) on a 3D sphere with exemplary inlier (orange) and outlier (blue) points. Plot (b) the
corresponding unnormalized probability density exp(βLOOD(ξ)). In both (a) and (b), β was set to
128.

(a) Out-of-Distribution Loss

(b) Unnormalized probability Density

Figure 3: Depiction of the OOD loss (LOOD(ξ)) in Fig. 2 in more orientations. (a) shows LOOD(ξ)
with exemplary inlier (orange) and outlier (blue) points; and (b) the corresponding unnormalized
probability density exp(βLOOD(ξ)). β was set to 128. Both (a) and (b) rotate the sphere by 0, 90,
180, and 270 degrees around the vertical axis.

B.2 Adaptive resampling

The second example demonstrates how the weighting step in Hopfield Boosting allows good estima-
tions of the decision boundary by sampling a small amount of highly relevant data points (Figure
4). For small, low dimensional data sets, one can always use all the data to compute LOOD (Figure
4, a). For large problems (e.g. Chen et al., 2021; Ming et al., 2022) this strategy becomes difficult.
Sampling N data points uniformly at random will then yield many points that are uninformative for
fitting a decision boundary (Figure 4, b). In contrast, when using Hopfield Boosting and sampling N
data points according to wt, the decision boundary more faithfully represents the decision boundary
fitted on the entire data set.
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Figure 4: Synthetic example of the adaptive resampling mechanism.

B.3 Effect on Learned Representation

In order to analyze the impact of Hopfield Boosting on learned representations, we utilize the output
of our model’s embedding layer (see 4.1) as the input for a manifold learning-based visualization.
Uniform Manifold Approximation and Projection (UMAP) McInnes et al. (2018) is a non-linear
dimensionality reduction technique known for its ability to preserve both global and local structure in
high-dimensional data.

First, we train two models – with and without Hopfield Boosting– and extract the embeddings of both
ID and OOD data sets from them. This results in a 512-dimensional vector representation for each
data point, which we further reduce to two dimensions with UMAP. The training data for UMAP
always corresponds to the training data of the respective method. That is, the model trained without
Hopfield Boosting is solely trained on CIFAR-10 data, and the model trained with Hopfield Boosting
is presented with CIFAR-10 and AUX data during training, respectively. We then compare the learned
representations concerning ID and OOD data.

Figure 5 shows the UMAP embeddings of ID (CIFAR-10) and OOD (AUX and SVHN) data based
on our model trained without (a) and with Hopfield Boosting (b). Without Hopfield Boosting, OOD
data points typically overlap with ID data points, with just a few exceptions, making it difficult to
differentiate between them. Conversely, Hopfield Boosting allows to distinctly separate ID and OOD
data in the embedding.

(a) without Hopfield Boosting (b) with Hopfield Boosting

Figure 5: UMAP embeddings of ID (CIFAR-10) and OOD (AUX and SVHN) data based on our
model trained without (a) and with Hopfield Boosting (b). Clearly, without Hopfield Boosting,
the embedded OOD data points tend to overlap with the ID data points, making it impossible to
distinguish between ID and OOD. On the other hand, Hopfield Boosting shows a clear separation of
ID and OOD data in the embedding.
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B.4 Dynamics of LOOD on Patterns in Euclidean Space

(a) After 0 steps (b) After 25 steps

(c) After 50 steps (d) After 100 steps

Figure 6: LOOD applied to exemplary data points on euclidean space. Gradient updates are applied to
the data points directly. We observe that the variance orthogonal to the decision boundary shrinks
while the variance parallel to the decision boundary does not change to this extent. β is set to 2.

In this example, we applied our out-of-distribution loss LOOD on a simple binary classification
problem. As we are working in Euclidean space and not on a sphere, we use a modified version
of MHE, which uses the negative Euclidean distance instead of the dot-product-similarity. For the
formal relation between Equation (12) and MHE, we refer to Appendix C.1:

E(ξ;X) = − β−1 log

(
N∑
i=1

exp(−β

2
||ξ − xi||22))

)
(12)

Figure 6a shows the initial state of the patterns and the decision boundary exp(βLOOD(ξ)). We store
the samples of the two classes as stored patterns in I and O, respectively, and compute the per-sample
loss from Equation (5) for all samples. We then set the learning rate to 0.1 and perform gradient
descent with LOOD on the data points. Figure 6b shows that after 25 steps, the distance between the
data points and the decision boundary has increased, especially for samples that had previously been
close to the decision boundary. After 100 steps, as shown in Figure 6d, the variability orthogonal to
the decision boundary has almost completely vanished, while the variability parallel to the decision
boundary is maintained.
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B.5 Dynamics of LOOD on Patterns on the Sphere

(a) After 0 steps

(b) After 500 steps

(c) After 2500 steps

Figure 7: LOOD applied to exemplary data points on a sphere. Gradients are applied to the data points
directly. We observe that the geometry of the space forces the patterns to opposing poles of the
sphere.

C Hopfield Boosting in Relation

C.1 Relation to Radial Basis Function Networks

This section shows the relation between radial basis function networks (RBF networks) and modern
Hopfield energy (following Schäfl et al., 2022). RBF networks have previously been used as
hypotheses for boosting (e.g., Rätsch et al., 2001). We define an RBF network as follows:

ϕ(ξ) =

N∑
i=1

wi exp(−
β

2
||ξ − µi||22) (13)

where wi are normalized weights

wi = softmax(βa)i =
exp(βai)∑N
j=1 exp(βaj)

(14)

An energy can be obtained by taking the negative log of ϕ(ξ)
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E(ξ) = − β−1 log (ϕ(ξ)) (15)

= − β−1 log

(
N∑
i=1

wi exp(−
β

2
||ξ − µi||22))

)
(16)

= − β−1 log

(
N∑
i=1

exp( β(−1

2
||ξ − µi||22 + β−1 log softmax(βa)i) )

)
(17)

= − β−1 log

(
N∑
i=1

exp( β(−1

2
||ξ − µi||22 + ai − lse(β,a) )

)
(18)

= − β−1 log

(
N∑
i=1

exp( β(−1

2
ξT ξ + µT

i ξ − 1

2
µT

i µi + ai) )

)
+ lse(β,a) (19)

Next, we set ai = 1
2µ

T
i µi

E(ξ) = − β−1 log

(
N∑
i=1

exp(βµT
i ξ)

)
+

1

2
ξT ξ + lse(β,a) (20)

Finally, we use the fact that lse(β,a) ≤ maxi ai + β−1 logN

E(ξ) = − β−1 log

(
N∑
i=1

exp(βµT
i ξ)

)
+

1

2
ξT ξ + β−1 logN +

1

2
M2 (21)

where M = maxi ||µi||

C.2 Contrastive Representation Learning

A commonly used loss function in contrastive representation learning (e.g., Chen et al., 2020; He
et al., 2020) is the InfoNCE loss (Oord et al., 2018):

LNCE = E
(x,y)∼ppos

{x−
i }M

i=1∼pdata

[
− log

ef(x)
T f(y)/τ

ef(x)T f(y)/τ +
∑

i e
f(x−

i )T f(y)/τ

]
(22)

Wang & Isola (2020) show that LNCE optimizes two objectives:

LNCE = E
(x,y)∼ppos

[
−f(x)T f(y)/τ

]
︸ ︷︷ ︸

Alignment

+ E
(x,y)∼ppos

{x−
i }M

i=1∼pdata

[
log

(
ef(x)

T f(y)/τ +
∑
i

ef(x
−
i )T f(x)/τ

)]
︸ ︷︷ ︸

Uniformity

(23)

Alignment enforces that features from positive pairs are similar, while uniformity encourages a
uniform distribution of the samples over the hypersphere.

In comparison, our proposed loss, LOOD, does not visibly enforce alignment between samples within
the same class. Instead, we can observe that it promotes uniformity to the instances of the foreign
class. Due to the constraints that are imposed by the geometry of the space the optimization is
performed on, that is, ||f(x)|| = 1 when the samples move on a hypersphere, the loss encourages the
patterns in the ID data have maximum distance to the samples of the AUX data, i.e., they concentrate
on opposing poles of the hypersphere. A demonstration of this mechanism can be found in Appendix
B.4 and B.5
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Table 2: Comparison of OOD detection performance on CIFAR-100 of Hopfield Boosting compared
to POEM (Ming et al., 2022), EBO (Liu et al., 2020), and MSP-OE (Hendrycks et al., 2019b) on
a ResNet-18 encoder. ↓ indicates "lower is better" and ↑ indicates "higher is better". Standard
deviations are estimated across five independent training runs.

Hopfield Boosting (ours) POEM EBO MSP-OE
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
SVHN 8.65±2.57 97.68±0.34 33.59±4.12 94.06±0.51 36.33±3.30 92.93±0.80 19.86±7.71 95.74±1.78

LSUN-Crop 10.87±3.03 97.15±0.61 15.72±3.46 96.85±0.60 21.06±3.49 95.79±0.69 32.88±1.43 92.85±0.37

LSUN-Resize 0.00±0.00 99.55±0.10 0.00±0.00 99.57±0.09 0.00±0.00 99.57±0.03 0.03±0.02 99.97±0.00

Textures 3.26±0.20 98.94±0.07 2.89±0.32 98.97±0.08 5.07±0.60 98.15±0.17 10.34±0.44 97.42±0.09

iSUN 0.00±0.00 99.56±0.09 0.00±0.00 99.59±0.09 0.00±0.00 99.57±0.03 0.08±0.03 99.96±0.01

Places 365 19.86±0.96 95.60±0.19 18.39±0.68 95.03±0.71 26.68±2.44 91.35±0.78 45.96±0.95 87.77±0.17

Mean 7.11 98.08 11.38 97.35 14.86 96.23 18.19 95.62

D Proofs

Lemma D.1. We consider the energy function

E(ξ) = − β−1 log
(
exp( β lse(β, IT ξ) ) + exp( β lse(β,OT ξ) )

)
(24)

= − β−1 log

(
exp

(
β β−1 log

(
N∑
i=1

exp(βiTi ξ)

))
+ exp( β β−1 log

(
N∑
i=1

exp(βoT
i ξ)

))
(25)

= − β−1 log

(
N∑
i=1

exp(βiTi ξ) +

N∑
i=1

exp(βoT
i ξ)

)
(26)

= − lse(β, (I ∥O)T ξ) (27)

E Further Experimental Details

E.1 Hyperparameter Selection

We use a separate validation process with an AUX data set for model selection. That is, we validate
the model on MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), and ImageNet-RC
with different augmentations than in training, as well as Gaussian and uniform noise.

We set the initial learning rate to 0.1 and decay it during the training process with a cosine schedule
without warm restarts (Loshchilov & Hutter, 2016). We use a single value for β throughout the
training and evaluation process and for all OOD data sets. We tuned the value of β for each in-
distribution data set separately by selecting the value of β from the set {2, 4, 8} that performed best
in the validation process. We set λ, the weight for the OOD loss LOOD to 1.

E.2 LSUN-Resize and iSUN datasets

What is striking is that all methods achieve perfect FPR95 results on the LSUN-Resize and iSUN
data sets. The LSUN-Resize data set has previously been found to give misleading results due to
image artifacts resulting from the resizing procedure (Tack et al., 2020). We hypothesize that there
exists a similar issue with the iSUN data set, as in our experiments, LSUN-Resize and iSUN behaved
in a very similar fashion.

E.3 Results on CIFAR-100

On CIFAR-100 (see Table 2), we observe that Hopfield Boosting surpasses the previously best method
by a relative 37% on the mean FPR95 metric. The improvement in the SVHN data set is especially
striking, improving the FPR95 from 33.59 to 8.65 compared to POEM. For the LSUN-Resize and
iSUN data sets we observe a similar behavior to the results from CIFAR-10, where all methods
achieve a perfect result on the FPR95 metric.
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F Notes on Langevin Sampling

Another method that is appropriate for earlier acquired models is to sample the posterior via the
Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011). This method is efficient
since it iteratively learns from small mini-batches Welling & Teh (2011); Ahn et al. (2012). See basic
work on Langevin dynamics Welling & Teh (2011); Ahn et al. (2012); Teh et al. (2016); Xu et al.
(2018). A cyclical stepsize schedule for SGLD was very promising for uncertainty quantification
Zhang et al. (2020). Larger steps discover new modes, while smaller steps characterize each mode
and perform the posterior sampling.

G Classifiers - energy perspective

It is known that deep classifiers can be considered energy-based models (see LeCun et al. (2006);
Grathwohl et al. (2020)). In the following, we will shortly introduce the energy-based perspective.
Assume we are given a neural network-based classifier C modeling p(y|ξ) with y ∈ Y where Y
is a discrete set of K classes. We denote the output of the final linear layer of the classifier (i.e.,
the logits) as l(ξ) = W T ξ where W ∈ RD×K are learnable parameters and ξ ∈ RD is the output
of the network’s penultimate layer. Thus, the logit of ξ being assigned to a specific, given y is
l(ξ, y) = (W T ξ)y . The energy E(ξ, y) is defined as the negative logit:

E(ξ, y) = −l(ξ, y) = −(W T ξ)y (28)

An energy is connected to a probability density via

p(ξ, y) =
1

Z
exp(−βE(ξ, y)) (29)

where β is the inverse temperature and Z is the so-called partition function: Z =∑
y∈Y

∫
ξ
exp(−βE(ξ, y)). Dividing by Z ensures that the probability density p(ξ, y) is normalized

(i.e., integrates to 1). By rearranging the terms of Equation (29) we obtain

E(ξ, y) = −β−1 log p(ξ, y)− β−1 logZ (30)

Under the assumption that ξ can be assigned to one of the classes in Y (i.e. ξ is in-distribution) we
have that

p(ξ) =
∑
y∈Y

p(ξ, y) =
∑
y∈Y

1

Z
exp(−βE(ξ, y)) =

1

Z

∑
y∈Y

exp(−βE(ξ, y)) (31)

and therefore the energy E(ξ) corresponding to the marginal probability p(ξ) equates to

E(ξ) = −β−1 log p(ξ)− β−1 logZ = −β−1 log

∑
y∈Y

exp(−βE(ξ, y))

 (32)

E(ξ) = −lse(β, l(ξ)) = −lse(β,W T ξ) (33)

In the context of out-of-distribution detection, the energy E(ξ) can be interpreted as follows: When a
sample ξ is in-distribution, the energy E(ξ) will be low as there is at least one class y whose logit
(W T ξ)y is high. In contrast, for out-of-distribution samples the energy E(ξ) will be high, because
all logits (W T ξ)y are low if there is no object visible that matches any of the classes. Therefore,
s(ξ) = −E(ξ) is a suitable score for out-of-distribution detection (Liu et al., 2020). However, they
do not take the full in-distribution data set into account.
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